Asymmetries of the Wind from Giants in S-type Symbiotic Binaries from UV and Optical Observations

N. Shagatova and A. Skopal

Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, Slovakia

Supported by VEGA 2/0030/21 and APVV-20-0148 grants.

S-type symbiotic stars

- wide interacting binary stars (P ≈ few years)
- white dwarf + red giant (RGB)
- mass transfer via stellar wind
- neutral and ionized wind
- quiescent and active phases

The luminosity problem

- accretion heats up the white dwarf up to T ~ 100 000 K and $\,$ L ~ 1000 $\rm L_{Sun}$

binary stars: mass accretion rate ~ few % of the mass loss rate

H^o column density during quiescent phases

- no outbursts on the white dwarf
- conical neutral wind area around the red giant
- fraction of the red giant wind ionized by the white dwarf

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

•

٠

Velocity profile

Column density models - comparison

Wind enhancement in the orbital-plane area

Object	i	$\dot{M}_{\rm sp} [M_{\odot} {\rm yr}^{-1}]$	model
EG And	70°	1.06×10^{-6}	Ι
	80°	9.00×10^{-7}	J
	90°	7.91×10^{-7}	Κ
SY Mus	80°	2.13×10^{-6}	L
	84°	1.65×10^{-6}	Μ
	90°	1.62×10^{-6}	Ν
	84°	6.51×10^{-7}	0

Shagatova et al. 2016, A&A 588, A83

Wind enhancement in the orbital-plane area

Object	i	$M_{\rm sp} [M_{\odot} {\rm yr}^{-1}]$	model	:
EG And	70°	1.06×10^{-6}	Ι	
	80°	9.00×10^{-7}	J	
	90°	7.91×10^{-7}	Κ	
SY Mus	80°	2.13×10^{-6}	L	
	84°	1.65×10^{-6}	Μ	
	90°	1.62×10^{-6}	Ν	
	84°	6.51×10^{-7}	Ο	

Shagatova et al. 2016, A&A 588, A83

<u>Mass-loss rate</u> for giants in S-type symbiotic systems from **line-of-sight independent** methods $\approx 10^{-7} M_{\odot}$ /year

(from nebular emission in radio and optical wavelengths)

Seaquist et al. 1993, ApJ 410, 260 Mikołajewska et al. 2002, Adv. Space Res. 30, 2045 Skopal 2005, A&A 440, 995

Wind enhancement in the orbital-plane area

Shagatova et al. 2016, A&A 588, A83

<u>Mass-loss rate</u> for giants in S-type symbiotic systems from **line-of-sight independent** methods $\approx 10^{-7} M_{\odot}$ /year

(from nebular emission in radio and optical wavelengths)

Seaquist et al. 1993, ApJ 410, 260 Mikołajewska et al. 2002, Adv. Space Res. 30, 2045 Skopal 2005, A&A 440, 995

Inconsistent with spherically symmetric wind.

Location of [OIII] λ 5007 line regions

• optical spectra from 1.3m telescope at Skalnaté Pleso, R = 30000, λ = 4200 – 7300 Å

-100

0

RV – v_{svs} [km/s]

100

• adapted from Shagatova 2017

Location of [OIII] λ 5007 line regions

Orbital variability of the FeI absorption lines

- slow outflow up to -5 km/s
- inflow values around $\phi = 0.1$

 $v_{r}^{G}(\phi)$ – radial velocity of the red giant

- $v_{svs} = -94.88 \text{ kms}^{-1}$ (Kenyon & Garcia 2016)
- Gaussian fits using Fityk (Wojdyr 2010)

• absorbed fluxes: maxima at $\phi \sim 0.6$

--→ asymmetry of the circumstellar matter distribution

Modelling line profiles of Fe I absorption lines

- 10 Fe1 absorption lines (5151 6469 Å)
- 10 orbital phases
- MARCS model + extension up to 150 R_q
- all relevant broadening mechanisms included
- atmosphere layer / distance from center and radial velocity as free parameters

- r = deepest layer of origin of the spectral line
- heights ≈ 0.02 to ≈ 0.06 R_q above the RG photosphere

Comparison with velocity profiles derived from measured near-orbital H^o column densities

Implications for wind focusing towards the orbital plane

a dense material occulting fraction of the polar wind below

• focusing by rotation

- average over 200 modelled line profiles
- for $i = 80^{\circ} \pm 10^{\circ}$:

Implications for wind focusing towards the orbital plane

Implications for wind focusing towards the orbital plane

H^o column density during active phases

Geometry of the neutral region and mass-loss rate

- transient emergence of a **neutral disk-like** structure in the orbital plane during active phases
- dominant contribution to n_H is from red giant's wind
- high spherical equivalent of the mass-loss rate

effective mass transfer onto the white dwarf companion

i	$E/I^{(a)}$	$\dot{M}_{ m sp}$ $^{(b)}$
70°	Е	$2.84^{+0.99}_{-1.14} \times 10^{-6}$
10	Ι	$6.80^{+4.76}_{-3.40}\times10^{-7}$
80°	Е	$2.24^{+1.34}_{-0.78}\times10^{-6}$
	Ι	$6.33^{+7.29}_{-3.65}\times10^{-7}$
90°	Е	$1.19^{+1.43}_{-0.83}\times10^{-6}$
	Ι	$5.53^{+7.19}_{-4.24} \times 10^{-7}$

wind focusing

Wind column densities during quiescent and active phases

- asymmetric distribution of the giant's wind in the orbital plane during quiescent and active phases
- wind focusing towards orbital plane a common property of winds from giants in S-type symbiotic stars https://www.symbiotic.com https://wwwwww.symbiotic.com https://www.symbiotic.com https://www.symbiotic.com https://www.symbiotic.com https://www.symbiotic.com"/>https://www.symbiotic.com https:/

Wind asymmetries in S-type symbiotic stars

Wind asymmetries in S-type symbiotic stars

Thank you for your attention!