

Search for new symbiotic stars using the *Gaia* DR3 data

<u>Lionel Mulato⁽¹⁾</u>, Jaroslav Merc⁽²⁾⁽³⁾, Stéphane Charbonnel⁽¹⁾, Olivier Garde⁽¹⁾, Pascal Le Dû⁽¹⁾, Thomas Petit⁽¹⁾

Conference 'Symbiotic stars, weird novae, and related embarrassing binaries' Prague, Czech Republic – June 7, 2024

⁽¹⁾2SPOT – Southern Spectroscopic Project Observatory Team, France
⁽²⁾Astronomical Institute of Charles University, Czech Republic
⁽³⁾European Southern Observatory, Germany

Motivation

- Can we use *Gaia* DR3 data to identify promising symbiotic candidates?
- Is *Gaia* Hα measurement useful in the search for new SySts?
- Can we define **reliable selection criteria** to find sources with **Hα emission** and **late-type star** continuum?
- Opportunity: **Spectral confirmation** of samples can be carried out using **2SPOT facilities** in both hemispheres.

Aims

Step 1: Validation of the Syst candidates from the Gaia DR3

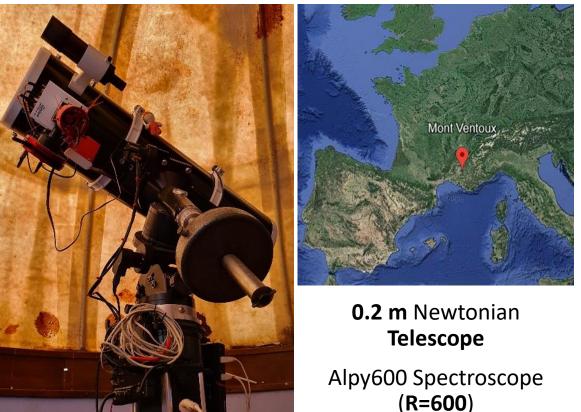
Step 2: Selection criteria tuning using samples from GALEX, Henize, and Wray catalogs

Step 3: Selection and observation of promising candidates from the *Gaia* LPV catalog

Step 4: (in the future) Search for candidates not included in the LPV catalog (Hα emission measurements published for 235 millions sources)

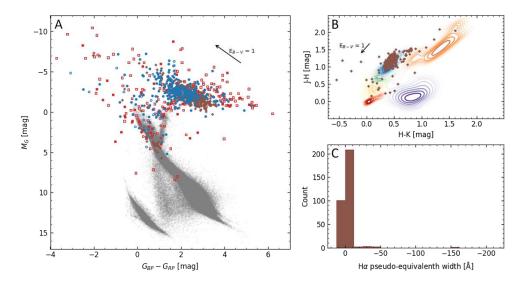
2SPOT equipment used for spectral confirmation

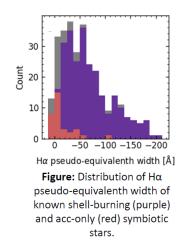
Chile-based Setup


Hosted at Deep Sky Chile

Alpy600 Spectroscope (**R=600**) France-based Setup

Hosted at L. Bernasconi Obs.

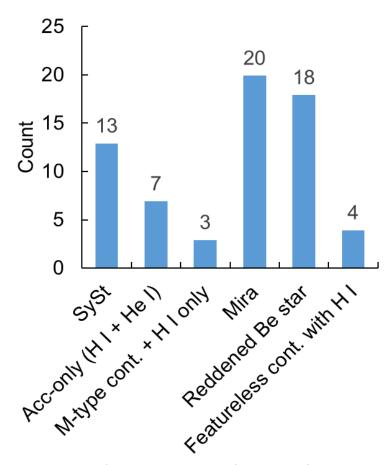



250 hours of observation since the beginning of the project

Symbiotic stars, weird novae, and related embarrassing binaries - Prague, Czech Republic - June 7, 2024

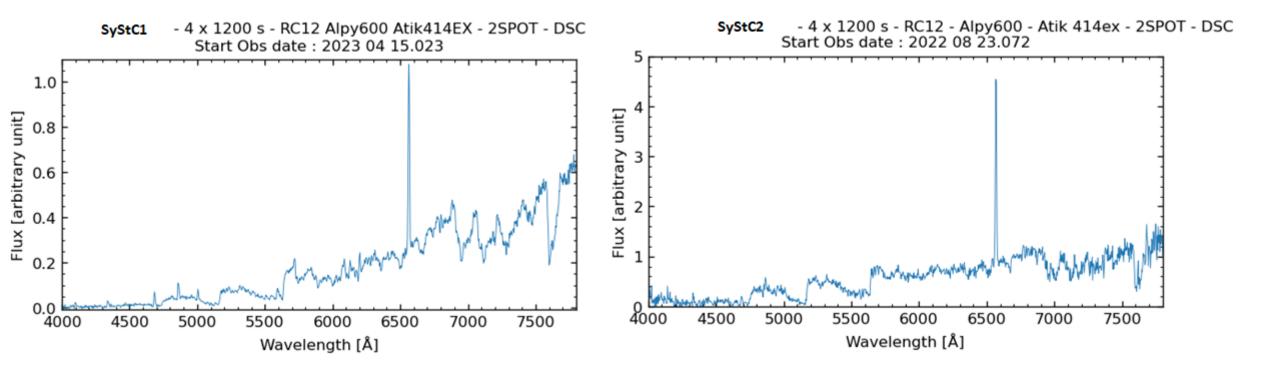
Step 1: Gaia DR3 SySt candidates

- Gaia DR3 lists 340 new SySt candidates
- sources located among giants in the Gaia HR diagram and among SySts in IR colorcolor diagram
- distribution of Hα pseudo-equivalent width is different from the known symbiotic stars


Figure: Gaia DR3 symbiotic candidates. **A:** Gaia HR diagram. Confirmed symbiotic stars, literature candidates and new Gaia DR3 candidates are shown in blue, red, and brown, respectively. **B:** NIR color-color diagram. **C:** Distribution of pseudo-EW of H α line in the Gaia candidates.

Step 1: Gaia DR3 SySt candidates

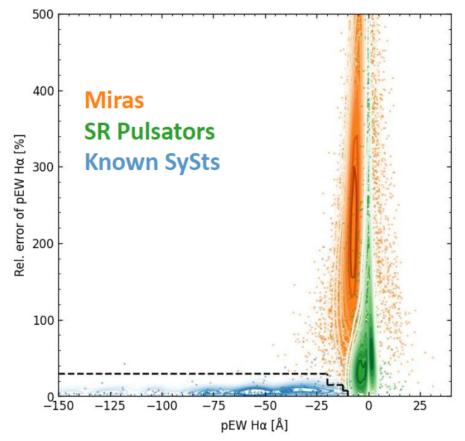
- only **8 sources** with strong Gaia H α emission: we confirmed that most of them are new SySts
- many of the remaining stars are probably single pulsating giants (several observed within our 'control sample')
- very **low success rate** due to datasets used for the classification (light curves, colors, astrometry, but no Hα pseudo-equivalent width)


Step 2: Selection criteria tuning using the samples from GALEX, Henize, and Wray catalogs

- Selection criteria:
 - Crossmatch with LPV catalog
 - Hα emission in Gaia DR3 (**pEwHα < -10 Å**)
 - 2MASS IR cuts
 - Objects with unknown nature in literature
 - 65 objects found in Galex, Henize, Wray catalogs
- Results:
 - >70 % of our candidates show Hα in emission,
 - 35% of our candidates show M-Type continuum + Hα in emission
- Contaminants:
 - Reddened **Be stars** (Hα detected) no filter in this step,
 - Pulsating red giants: Miras, SRs pulsating with large amplitude (Hα undetected)
- Lessons learned:
 - Most of the **pulsating stars** can be **filtered out** when the **uncertainty of the Ha** pseudo-equivalent width is considered

Figure: Preliminary results on the nature of our candidates from Galex, Henize and Wray catalogs

Step 2: Selection criteria tuning using the samples from GALEX, Henize, and Wray catalogs



Discovery of **2 new carbon SySts** (only 10 were known in the Milky Way)

Symbiotic stars, weird novae, and related embarrassing binaries - Prague, Czech Republic - June 7, 2024

Step 3: Selection and observation of promising candidates from the Gaia LPV catalog

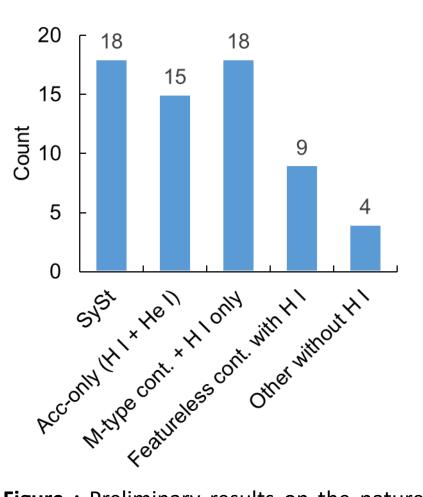

- Major selection criteria:
 - Tuned pEwHα and its relative error
 - 2MASS IR cuts
 - Objects with unknown nature in literature
 - Gmag cut (< 15)
 - Golden Sample: 64 very promising candidates (all observed)
 - Hundreds of less promising candidates (observation in progress)

Figure : Position of Miras (orange), SRs(green), and known galactic symbiotic stars (blue) in the rel. error of pEWH α vs. pEWH α plane. The black dashed lines denote the limits applied to LPV catalog in Step 3 of the search.

Step 3: Selection and observation of promising candidates from the Gaia LPV catalog

- High success rate on the Golden sample:
 - 94 % of our candidates show Hα in emission
 - 80 % of our candidates show M-type continuum and H α in emission
 - Only 6 % of our candidates do not show any H α in emission
- Work in progress:
 - Observation of less promising candidates (new SySts already found but with more contaminants)
 - **pEWHα / Rel. Err. tuning** in the region where pulsating red giants and SySts coexist
 - Paper about to be submitted for steps 1, 2 and first part of step 3

Figure : Preliminary results on the nature of our Golden Gaia LPV candidates

Thanks for your attention !

Any questions ?