Symbiotic stars, weird novae, and related embarrassing binaries Prague, Czech Republic Charles University June $3 - 7$, 2024

Evolution of the mass accretion rate in symbiotic stars-MWC 560, Rs Oph and T Cr B

Vladislav **Marchev** – Institute of Astronomy and NAO, Bulgarian academy of sciences Radoslav **Zamanov** - Institute of Astronomy and NAO, Bulgarian academy of sciences Dragomir **Marchev** – Shumen University

Svetlana **Boeva** - Institute of Astronomy and NAO, Bulgarian academy of sciences

Goals

- To follow the time evolution of the mass accretion rate for symbiotic stars along with other parameters like effective temperature, radius and luminosity, calculated from multicolor photometry.
- To estimate the total amount of mass accretion between the last two nova eruptions of RS Oph using public data from AAVSO
- To make more precise calculations for mass accretion using our own photometric observational data for T CrB

MWC560

- MWC560 (V694 Mon) identified as an emission line object by Merrill & Burwell (1943)
- Spectroscopic observations from 1984 show extraordinary symbiotic star with absorption – 3000 km/s at H β and other Balmer lines (Bond et al. 1984)
- Later spectroscopy from early 1990 at the NAO Rozhen Observatory demonstrate outflow velocities 6000 – 7000 km/s and Tomov et al. (1990a) proposed absorption is caused by a jet along the line of site
- The outflow could be a highly collimated baryon-loaded jet (Schmid et al. 2001) or wind from the polar regions (Lucy, Knigge & Sokoloski 2018)
- Considered to be a non-relativistic analog of the quasars:
- 1. Collimated outflow (jets)
- 2. The optical emission lines (Balmer lines and FeII lines) are similar to those of the low-redshift quasars (Zamanov & Marziani 2002)
- 3. The absorption lines are similar to the lines of the broad absorption lines quasars (Lucy et al. 2018)

B and V photometric data from AAVSO

Procedure

1. Obtaining B and V – magnitudes of the hot component by subtracting the contribution of the giant:

For B filter – $\lambda_{\rm eff}$ = 4371.07 Å zero magnitude star 6.13 ×10⁻⁹ erg cm⁻² s⁻¹ Å⁻¹, and for Generic Bessell.

For V filter – $\lambda_{\rm eff}$ = 5477.70 Å , zero magnitude star 3.63 × 10⁻⁹ erg cm⁻² s⁻¹ Å⁻¹.

2. Correction for the interstellar extinction and obtaining B_{0} and V_{0} achieving (B-V)₀

3. Using (B − V)₀ and the calibration for black body (Table 18 in Strayzis 1992), we calculate the effective temperature of the hot component, T_{eff} .

4. Using distance d [pc], the dereddened magnitudes B_0 and V_0 , and the calculated $\mathsf{T}_{\mathsf{eff}}$ we estimate the effective radius R_{eff} of the hot component.

5. To derive the optical luminosity of the hot component we use the standard formula:

$$
L=4\pi R_{eff}^2\sigma T_{eff}^4
$$

6. Calculating the accretion rate using:

$$
L=\frac{1}{2}G\frac{M_{wd}\dot{M}_a}{R_{wd}}
$$

Parameters

• For the red giant :

 m_V = 12.25 and m_B = 13.94 (Zamanov et al. 2020)

- Interstellar extinction $E(B-V)=0.15$ mag (from the 2200 °A feature, Schmid et al. 2001)
- We estimate extinction in B and V bands $-A_B = 0.620$ and $A_V = 0.468$ following the mean extinction law (Eq.1, Eq.3a, Eq.3b in Cardelli, Clayton, & Mathis 1989)
- Distance we get from Bailer-Jones (2021) for the Gaia EDR3 data (Gaia Collaboration et al. 2018) *d = 2217 pc*
- *Mwd=0.9M^ʘ* (Zamanov et al. 2011)

Rwd=6221km (Zamanov et al. 2011)

Dereddened color-magnitude diagram for the hot component of MWC560

Results MWC560

RS Oph

R_{wd}=2296km (using the mass radius relation given by Eggleton's formula Verbunt & Rappaport 1988)

Results RS Oph

Critical pressure

Strength of the nova outburst is determined by the pressure achieved at the core-envelope interface *Pce*. Which is given by the formula:

$$
P_{ce} = \frac{GM_{wd}}{4\pi R_{wd}^4} \Delta M_a
$$

 P_{ce} ~10¹⁹ - 10²⁰dyn cm⁻² (Fujimoto 1982, MacDonald 1983)

Between the last two outbursts RS Oph accumulated $\Delta M_a = 3.01 \times 10^{-6} M_{\odot}$

This give is critical pressure $P_{ce} = 3.06 \times 10^{19}$ dyn cm^{-2}

d=914pc (Schaefer 2022)

E(B-V)=0.07mag (Nikolov 2022)

 m_V *= 12.46* and m_B *= 14.55*

Mwd=1.37 **± 0.13***M^ʘ* (Stanishev et al. 2004)

R_{wd}=2018km (using the mass radius relation given by Eggleton's formula, Verbunt & Rappaport 1988)

Using our data for the calculations

 a the uncertainties are large due to the low brightness.

T Cr B results

During the super-active state (green squares) between April 2016 and July 2022 we see: L between 40-100 L_o **T between 8000 – 12000K M^a between 1,4 – 4.0 [10-8M***^ʘ* **yr-1]**

Total mass accretion accumulated during the superactive state:

 M_a ~2 × 10⁻⁷ M_{\odot} According to Jose et al. 2020; Shara et al. 2018, for

TNR is needed $5 \times 10^{-7} - 1.6 \times 10^{-6}$ M_{\odot}

Thank you for the attention!