
  

Marco Marco LaversveilerLaversveiler¹, Denise R. ¹, Denise R. GonçalvesGonçalves¹, Helio J. ¹, Helio J. Rocha-PintoRocha-Pinto¹, Jaroslav ¹, Jaroslav MercMerc²²

¹ Valongo Observatory – Federal University of Rio de Janeiro¹ Valongo Observatory – Federal University of Rio de Janeiro
² Astronomical Observatory of Charles University² Astronomical Observatory of Charles University

The Symbiotic Star Population in 
Nearby Galaxies and its Tenuous 

Link with SNe Ia Events

Symbiotic Stars, Weird Novae, and Related Embarrassing Binaries – Prague, 2024



  

The Local Group Symbiotic Stars
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Milky Way
283

Confirmed Symbiotic Stars

Data: Merc+2019, Akras+2019



  

LMC
10

Confirmed Symbiotic Stars

SMC
12

Data: Merc+2019, Akras+2019



  

Draco: 1
NGC 6822: 1

Confirmed Symbiotic Stars

Data: Merc+2019, Akras+2019



  

Andromeda
32

Confirmed Symbiotic Stars

Data: Merc+2019, Akras+2019



  

NGC 185: 1
NGC 205: 1

Confirmed Symbiotic Stars

Data: Merc+2019, Akras+2019



  

Triangulum galaxy
12

Confirmed Symbiotic Stars

Data: Merc+2019, Akras+2019



  

*IC 10: 1

Confirmed Symbiotic Stars

Data: Merc+2019, Akras+2019
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● We tackle this problem in two different ways:
– An empirical (observations)

– A theoretical-statistical (binary population synthesis)



  

Empirical Approach



  

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)

SySt height distribution
***Scale height computated = 0.654 kpc

Data: Merc+2019, Akras+2019



  

Orbits integrated with GALPY (Bovy, 2015) Velocity data: Literature, GAIA DR3, RAVE DR6, APOGEE DR16

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

● Known SySt dynamically classified (based 
on Carrillo+ 2020; Perottoni+ 2021):

– Thin disk: 45%

– Thick disk: 19%

– Halo: 36%

● Clearly separated in the velocity diagram

● Thin disk SySt number density estimated 
as 13.56 kpc-3

● Computation of SySt population lower 
limit

– 7200–14500

– Compatible with Lü+ 2006, Kenyon 1986: 
1200–15000, via population synthesis

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

Theoretical (Statistical) Approach



  

Han+2020
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Based on:
Han+2020 and Lü+2006

*stars with masses between 0.8 and 8 M⊙

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

Statistical Binary Evolution

● Observational inputs (MS binaries)

– Semi-major axis distributions (Duchêne & 
Kraus 2013)

– Mass-ratio distributions (Duchêne & Kraus 
2013)

– IMF (Kroupa 2001)

– Binary fraction / Multiplicity frequency
● Duchêne & Kraus (2013) – Milky Way

● Milone+2009 and Rubele+2011 – LMC, SMC (clusters)

● Spencer+2017 – Leo II

● Spencer+2018 – Fornax, Leo II, Sculptor, Sextans, 
Carina, Draco, Ursa Minor

● Minor+2013 – Fornax, Sculptor, Sextans, Carina

● Geha+2013 – Hercules, Leo IV

● Otherwise the range 0.25–0.75 is assumed
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Carina, Draco, Ursa Minor

● Minor+2013 – Fornax, Sculptor, Sextans, Carina

● Geha+2013 – Hercules, Leo IV

● Otherwise the range 0.25–0.75 is assumed

● Approximations

– Mean radii as a function of mass

● Derived from PARSEC stellar tracks 
(Bressan+2012) and interpolated

– Critical mass-ratio as a function of primary 
mass and evolutionary phase (Chen & Han 
2008, Ge+2013)

– Effective Roche lobe radius (Eggleton 1983)

– Absolute visual magnitude corrected to 
bolometric (McConnachie 2012, Reid 2016)

– Metallicity – Z obtained from average [Fe/H] 
(McConnachie 2012)



  

Input distributions

Laversveiler et al. (in prep)

*stars with masses between 0.8 and 8 M⊙

Based on:
Han+2020 and Lü+2006



  

Probability
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Results

● Computation of the fraction of SySt formed and 
scaling with galactic properties:

– Milky Way: same approach as Kenyon+1993, but 
different derivation of basic parameters.

– LG dwarf galaxies: preserves the idea of 
Kenyon+1993, but uses the specific evolutionary 
flux of PNe from Buzzoni+2006. 

● The formation rate density of PNe is used 
(Phillips 1989; Kenyon+1993)

– Death rate of low- and intermediate mass stars

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  
(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

Derived from K – B colors, by
assuming 0.5% of the RG population
represents SySt

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  
(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

● From other authors

– Kenyon 1986: 3,000 
SySt

– Munari & Renzini 
1992: 300,000 SySt

– Kenyon+1993: 33,000 
SySt

– Yungelson+1995: 
3,000–30,000 SySt

– Magrini+2003: 
400,000 SySt

– Lü+2006: 1,200–
15,000 SySt

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

Type Ia Supernovae from 
Symbiotic Progenitors



  

SySt as SN Ia Progenitors?

NASA/CXC/M. Weiss
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SySt as SN Ia Progenitors?

● Selection of SySt formed with 1.1 M☉ (or higher) 
C+O WDs

– Restriction to channels II AGB and III

– The IFMR (Cummings+2018) implies that such 
WDs have ZAMS masses > 6 M☉

– The limit on the WD mass is set by SySt giants: 
mass loss, envelope mass and lifetime (Munari & 
Renzini 1992, Kenyon+1993)

● Our considerations try to extrapolate the 
maximum contribution of SySt to SNe Ia events.



  

Results

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

Summary and Conclusions
● SySt Population in the Milky Way

– Bottom limit ~ 104 SySt (7200–14500 determined empirically).

– From (statistical) binary evolution we expect (3.1–4.6) x 104 SySt.

– Upper limit (6.0–9.2) x 104 SySt; from the disk’s truncation radius.

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)
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I am looking for a Ph.D. position 
in binaries for 2025!

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)



  

Thank you!Thank you!
Děkuji!Děkuji!

Free 
Palestine!



  

Extra Slides



  

Computed from PARSEC stellar tracks (Bressan+2012) Reconstructed from Ge+2013 and Chen & Han (2008)

Mass-ratio cut

Laversveiler et al. (in prep)

Main Sequence

RGB

AGB

● Difference in behavior is due to different 
envelope responses (radiative or convective).
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