

The Symbiotic Star Population in Nearby Galaxies and its Tenuous Link with SNe Ia Events

Marco Laversveiler¹, Denise R. Gonçalves¹, Helio J. Rocha-Pinto¹, Jaroslav Merc²

¹ Valongo Observatory - Federal University of Rio de Janeiro
 ² Astronomical Observatory of Charles University

Symbiotic Stars, Weird Novae, and Related Embarrassing Binaries - Prague, 2024

The Local Group Symbiotic Stars

Phoenix Dwarf 1.44

Data: Merc+2019, Akras+2019

Phoenix Dwarf

Data: Merc+2019, Akras+2019

Phoenix Dwarf

Phoenix Dwarf

Phoenix Dwarf 1.44

Ok... but how many symbiotic stars (SySt) are there to be detected?

HARD

Ok... but how many symbiotic stars (SySt) are there to be detected?

- Why are we interested in knowing about it?
 - Better characterize SySt and related phenomena
 - accretion physics, disk formation, mass transfer, novae, outbursts, flickering, pulsations etc
 - Deeper understanding of binary evolution

Ok... but how many symbiotic stars (SySt) are there to be detected?

- Why are we interested in knowing about it?
 - Better characterize SySt and related phenomena
 - accretion physics, disk formation, mass transfer, novae, outbursts, flickering, pulsations etc
 - Deeper understanding of binary evolution

- We tackle this problem in two different ways:
 - An empirical (observations)
 - A theoretical-statistical (binary population synthesis)

Empirical Approach

HARD

Data: Merc+2019, Akras+2019

- Known SySt dynamically classified (based on Carrillo+ 2020; Perottoni+ 2021):
 - Thin disk: 45%
 - Thick disk: 19%
 - Halo: 36%
- Clearly separated in the velocity diagram
- Thin disk SySt number density estimated as 13.56 kpc⁻³
- Computation of SySt population lower limit
 - 7200-14500
 - Compatible with Lü+ 2006, Kenyon 1986: 1200–15000, via population synthesis

$$N_{\rm ss,min} = 2\pi R_{\rm G}^2 h_{\rm ss} n_0$$

Theoretical (Statistical) Approach

Statistical Binary Evolution

- Observational inputs (MS binaries)
 - Semi-major axis distributions (Duchêne & Kraus 2013)
 - Mass-ratio distributions (Duchêne & Kraus 2013)
 - **IMF** (Kroupa 2001)
 - Binary fraction / Multiplicity frequency
 - Duchêne & Kraus (2013) Milky Way
 - Milone+2009 and Rubele+2011 LMC, SMC (clusters)
 - Spencer+2017 Leo II
 - Spencer+2018 Fornax, Leo II, Sculptor, Sextans, Carina, Draco, Ursa Minor
 - Minor+2013 Fornax, Sculptor, Sextans, Carina
 - Geha+2013 Hercules, Leo IV
 - Otherwise the range 0.25–0.75 is assumed

Statistical Binary Evolution

- Observational inputs (MS binaries)
 - Semi-major axis distributions (Duchêne & Kraus 2013)
 - Mass-ratio distributions (Duchêne & Kraus 2013)
 - **IMF** (Kroupa 2001)
 - Binary fraction / Multiplicity frequency
 - Duchêne & Kraus (2013) Milky Way
 - Milone+2009 and Rubele+2011 LMC, SMC (clusters)
 - Spencer+2017 Leo II
 - Spencer+2018 Fornax, Leo II, Sculptor, Sextans, Carina, Draco, Ursa Minor
 - Minor+2013 Fornax, Sculptor, Sextans, Carina
 - Geha+2013 Hercules, Leo IV
 - Otherwise the range 0.25–0.75 is assumed

- Approximations
 - Mean radii as a function of mass
 - Derived from PARSEC stellar tracks (Bressan+2012) and interpolated
 - Critical mass-ratio as a function of primary mass and evolutionary phase (Chen & Han 2008, Ge+2013)
 - Effective Roche lobe radius (Eggleton 1983)
 - Absolute visual magnitude corrected to bolometric (McConnachie 2012, Reid 2016)
 - Metallicity Z obtained from average [Fe/H] (McConnachie 2012)

Laversveiler et al. (in prep)

By Luan Garcez

Laversveiler et al. (in prep)

Laversveiler et al. (in prep)

Results

- The formation rate density of PNe is used (Phillips 1989; Kenyon+1993)
 - Death rate of low- and intermediate mass stars

galaxy	#SySt	galaxy	#SySt
Milky Way	38578^{+8204}_{-8036}	Sagittarius	7^{+1}_{-2}
LMC	795^{+168}_{-166}	Fornax	12_{-6}^{+5}
SMC	220_{-47}^{+46}	Leo II	0
NGC 205	189^{+96}_{-126}	Sculptor	0
IC 10	172_{-117}^{+88}	Sextans	0
NGC 6822	131_{-88}^{+67}	Carina	0
NGC 185	45^{+23}_{-30}	Draco	0
IC 1613	70^{+35}_{-46}	Ursa Minor	0
NGC 147	57^{+30}_{-38}	Hercules	0
WLM	15^{+8}_{-10}	Leo IV	0

- Computation of the fraction of SySt formed and scaling with galactic properties:
 - Milky Way: same approach as Kenyon+1993, but different derivation of basic parameters.
 - LG dwarf galaxies: preserves the idea of Kenyon+1993, but uses the specific evolutionary flux of PNe from Buzzoni+2006.

$$\mathcal{N}_{i} = \mathcal{B}\tau_{\rm ss}L_{\odot,\rm bol} \times 10^{0.4(M_{V,\odot} + \rm BC_{\odot} - M_{V,i} - \rm BC_{i})}$$

$$\mathcal{N}_{\rm G} = 2\pi R_{\rm G}^{2}h_{\rm ss}\nu_{\rm PN}\tau_{\rm ss}$$

$$\mathcal{N}_{\rm ss} = \mathcal{N}f_{\rm ss}$$

$$\int_{1}^{8.0} \frac{df_{\rm bin}^{*}(M_{1})}{dM_{1}}\sum_{i}f_{\rm evol}^{(i)}(M_{1}) dM_{1}$$

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)

Type Ia Supernovae from Symbiotic Progenitors

SySt as SN Ia Progenitors?

NASA/CXC/M. Weiss

SySt as SN Ia Progenitors?

NASA/CXC/M. Weiss

SySt as SN Ia Progenitors?

- Selection of SySt formed with 1.1 M_{\odot} (or higher) C+O WDs
 - Restriction to channels II AGB and III
 - The IFMR (Cummings+2018) implies that such WDs have ZAMS masses > 6 M_{\odot}
 - The limit on the WD mass is set by SySt giants: mass loss, envelope mass and lifetime (Munari & Renzini 1992, Kenyon+1993)

$$r_{\rm SNe\ Ia} = \frac{\mathcal{N}}{\tau_{\rm ss}} \int_{6.0}^{8.0} \frac{df_{\rm bin}^*(M_1)}{dM_1} \sum_i f_{\rm evol}^{(i)}(M_1) \, dM_1$$

• Our considerations try to extrapolate the maximum contribution of SySt to SNe Ia events.

Results

₫

-5

galaxy	SNe rate [yr ⁻¹]										
Milky Way	$1.14^{+0.09}_{-0.08} \times 10^{-4}$	10^{-2}	*						Yungelso	n+19	95
LMC	$(7.83 \pm 0.66) \times 10^{-6}$							•	Hachisu-	+1996	5
SMC	$(2.26 \pm 0.20) \times 10^{-6}$	10^{-3}	Ť					×	Li+1997		
NGC 205	$(1.15 \pm 0.10) \times 10^{-6}$							*	Chen+20	011	
IC 10	$(1.08 \pm 0.09) \times 10^{-6}$	10^{-4} -	•				-	Ŧ	Lü+2009)	
NGC 6822	$8.19^{+0.72}_{-0.73} \times 10^{-7}$		1 1				-	±-	Liu+2019	9	
NGC 185	$(2.93 \pm 0.25) \times 10^{-7}$	-10^{-5}		ē							
IC 1613	$4.70^{+0.35}_{-0.36} \times 10^{-7}$	i L		Ŧ	-						
NGC 147	$3.58^{+0.31}_{-0.32} \times 10^{-7}$	$\frac{1}{2}$ 10^{-6}			T Pr						
WLM	$(9.72 \pm 0.84) \times 10^{-8}$	ate				i i					
Sagittarius	$(5.13 \pm 0.42) \times 10^{-8}$	ບ 10 ⁻⁷ -	-		т-	ē					
Fornax	$(5.67 \pm 0.50) \times 10^{-8}$	Z				т <u></u> ф ф					
Leo II	$3.91^{+0.30}_{-0.29} \times 10^{-9}$	10 ⁻⁸									
Sculptor	$(2.96 \pm 0.22) \times 10^{-9}$	10						ē.			
Sextans	$(2.25 \pm 0.17) \times 10^{-9}$	10-9						- <u>-</u> -	a		
Carina	$2.05^{+0.16}_{-0.15} \times 10^{-9}$	10	-						म		
Draco	$9.82^{+0.76}_{-0.73} \times 10^{-10}$	10-10	-							₫	
Ursa Minor	$(1.11 \pm 0.25) \times 10^{-9}$	10 - 3									Ē
Hercules	$1.95^{+0.45}_{-0.43} \times 10^{-10}$		ļ		1						
Leo IV	$7.03^{+1.60}_{-1.61} \times 10^{-11}$	-2	23 -20		-17	-14	-11		-8		
		-				M_V					

- SySt Population in the Milky Way
 - Bottom limit ~ 10^4 SySt (7200–14500 determined empirically).
 - From (statistical) binary evolution we expect (3.1-4.6) x 10⁴ SySt.
 - Upper limit (6.0–9.2) x 10⁴ SySt; from the disk's truncation radius.

- SySt Population in the Milky Way
 - Bottom limit ~ 10^4 SySt (7200–14500 determined empirically).
 - From (statistical) binary evolution we expect (3.1-4.6) x 10⁴ SySt.
 - Upper limit (6.0–9.2) x 10⁴ SySt; from the disk's truncation radius.
- Local Group Dwarf Galaxies SySt Population
 - Expected population follows the luminosity; and their binary fraction promotes the dispersion.
 - Hundreds of SySt are expected in the larger ones (LMC and SMC), and no SySt in the tiny ones.

- SySt Population in the Milky Way
 - Bottom limit ~ 10^4 SySt (7200–14500 determined empirically).
 - From (statistical) binary evolution we expect (3.1-4.6) x 10⁴ SySt.
 - Upper limit (6.0–9.2) x 10⁴ SySt; from the disk's truncation radius.
- Local Group Dwarf Galaxies SySt Population
 - Expected population follows the luminosity; and their binary fraction promotes the dispersion.
 - Hundreds of SySt are expected in the larger ones (LMC and SMC), and no SySt in the tiny ones.
- SNe Ia from Symbiotic Progenitors
 - 1.04 x 10⁻⁴ SNe Ia / yr in the Milky Way, representing 3.8% of the observed rate (e.g. Li+2011, Adams+2013).
 - 7.6% if the SySt population is retrieved using the disk's truncation radius.
 - From 10⁻⁶ to 10⁻¹¹ SNe Ia / yr, implying no SNe Ia events are expected from the smaller galaxies.
 - SySt can not be the main progenitors of SN Ia events through the classical channel (e.g. Munari & Ranzini 1992, Kenyon+1993, Yungelson+1995,1998, Soker 2019)

(Laversveiler & Gonçalves 2023; Laversveiler et al. in prep)

I am looking for a Ph.D. position

- SySt Population in the Milky Way
 - Bottom limit ~ 10^4 SySt (7200–14500 determined empirically).
 - From (statistical) binary evolution we expect (3.1-4.6) x 10⁴ SySt.
 - Upper limit (6.0-9.2) x 10
- Local Group Dwarf Gala
 - Expected population follows the luminosity; and their binary fraction promotes the dispersion.

in binaries for 2025!

- Hundreds of SySt are expected in the larger ones (LMC and SMC), and no SySt in the tiny ones.
- SNe Ia from Symbiotic Progenitors
 - 1.04 x 10⁻⁴ SNe Ia / yr in the Milky Way, representing 3.8% of the observed rate (e.g. Li+2011, Adams+2013).
 - 7.6% if the SySt population is retrieved using the disk's truncation radius.
 - From 10⁻⁶ to 10⁻¹¹ SNe Ia / yr, implying no SNe Ia events are expected from the smaller galaxies.
 - SySt can not be the main progenitors of SN Ia events through the classical channel (e.g. Munari & Ranzini 1992, Kenyon+1993, Yungelson+1995,1998, Soker 2019)

Thank you! Děkuji!

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

UNIVERZITA KARLOVA

Extra Slides

• Difference in behavior is due to different envelope responses (radiative or convective).