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RED SUPERGIANTS

Post main sequence stars between 8 - 30𝑴⊙
Very extended envelope (up to 1500 𝑹⊙)

Low surface temperatures (3500-4500 K)

Deep convective envelope

Large mass loss through dusty winds

Important problem of 
stellar evolution
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Low velocity (25-50 km/s)
Massive (10-9 - 10-5 ሶ𝑴⊙/yr)
Origin not well understood:

Pulsations?
Convection?
Magnetic fields?

Some outflows around RSGs are very complex 
and asymmetric.

RED SUPERGIANTS
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One of the largest RSG observed
(17 ± 8 𝑴⊙, 1,420 ± 120 𝑹⊙, Wittowski 2012)

Has been losing mass for 1200 years at a very high 
rate (~10-4 ሶ𝑴⊙/yr, Danchi 1994)

Very extended dusty ejecta can be resolved IR and 
microwaves

Discrete mass ejections thought to be due to 
magnetic activity and convection
(Humphrey 2022, Quintana-Lacaci 2023 )

QUINTANA-LACACI 2023 (~300 GHZ)

KAMINSKI 2019 (~350 GHZ)VY CANIS MAJORIS
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CAN WE EXPLAIN SOME OF THESE MASS LOSS
EPISODES WITH BINARY INTERACTIONS?

Massive stars are often found in binaries (e.g. Sana 2012)
Binarity rate in RSGs around 30% (e.g., Neugent 2021, Patrick+2022) 
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… a companion in highly eccentric orbit grazes 
the envelope of a very extended RSG?

Shock through the outer envelope

Matter is ejected asymmetrically

Gas radiatively cools and expands

Dust starts to condense, winds due to                      
radiative pressure

Run 3D hydro simulations of this system
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Evolve this binary system in 3D 
smoothed particle hydrodynamics

Orbital timescales are very large

We need : Hydro + gravity

Radiation (cooling + winds)

Dust condensation (winds)

computationally 
expensive

Emulate the effect of radiative cooling by implicitly 
cooling to the equilibrium value 

Free wind where dust condensation conditions are met
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M1 = 20 Mʘ , 
M2 = 2 Mʘ , 
P = 43.91yrs
2 million particles

One interaction (Landri & Pejcha 2024)
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. Each interaction tightens the orbit

. Companion reaches deeper layers

. CEE after 200 years (14 orbits) 

Evolution of mass loss
. Mass loss is episodic
. Enhanced after each interaction
. Loses 0.185 𝑀⊙before CEE
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Slow evolution until 5th orbit (140 yrs):
. broad, low-density spirals
. semi-circular slab

Then strong orbit decay :
. Dense inner outflows
. Tighter shell-like structure

Final outflow:
. dense inner region (0.15 𝑀⊙
extending up to ∼100 au)
. Intermediate region (3×10−2 𝑀⊙
up to ∼500 au)
. Extended region (5×10−3 𝑀⊙
up to ∼2000 au)

Wind terminal velocities approach vr ~ 60 
km/s 

EVOLUTION OF THE EJECTA Density snapshots along the z=0 and x=0 planes
(Landri & Pejcha 2024)



Binarity rate in RSGs is about 30% from observations (e.g., Neugent 2021, 
Patrick+2022)

→ Companion interaction could drive wide asymmetric winds around 
RSGs in close binaries

Winds are massive (extended ejecta carries 5×10−3 𝑀⊙)
→ dusty ejecta can be observed

Can only explain part of the asymmetric ejecta around VY CMa 
→ there must be an interplay with other processes (convection, 
magnetic activity)

What’s next?
PRODUCE

SYNTHETIC
OBSERVABLES

IMPROVEMENTS ON
THE ACCURACY OF
THE SIMULATIONS

CONCLUSION
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