Chemical abundances and kinematics of symbiotic giants in S-type systems

Cezary Gałan CAMK PAN, Warsaw, Poland

Symbiotic stars conference, 4 VI 2024, Prague, Czech Republic

What can we know from measured abundances?

Origin from stellar populations:

- a-elements (O, Ne, Mg, Si, S, Ar, Ca, Ti): produced by massive stars and SNe II, over short time-scales;
- iron (Fe): produced by SNe Ia over much longer time-scales.

Metallicity ([Fe/H] is its proxy):

- impact on the mass outflow rate;
- effect on the s-process efficiency in AGB stars;
- is linked with the age of parent population.

Binary systems

Processes in stars interiors

C, N, O abundances – evolutionary status:

- ¹²C/¹³C and ¹²C/¹⁴N the 1-st dredge-up indicator;
- ¹²C/¹³C informations on the interior mixing;
- ¹⁶O/¹⁷O the initial masses of giants;
- ¹⁶O/¹⁸O the initial oxygen abundances.

Chemical abundances of symbiotic giants from high-resolution spectra for >50 SySt

Gemini-South (8m)

southern objects

SPECTROGPAPHS

PHOENIX: ~1.56, 2.23, 2.36 μm; R ~50k, 70k IGRINS: ~1.5 - 1.7, 20.8 - 24.0 μm; R ~45k S/N > 100

KPNO Mayall (4m)

northern objects

Analyses are now completed for 52 objects:

24 southern SySt (PHOENIX, *H*- and *K*-band) Gałan, C., et al., 2016, MNRAS, 455, 1282 13 southern SySt (PHOENIX, *H*-band) Gałan, C., et al., 2017, MNRAS, 466, 2194 14 northern SySt (PHOENIX, *H*- and *K*-band) Gałan, C., et al., 2023, MNRAS, 526, 918 V934 Her (IGRINS) Hinkle K. H., et al., 2019, ApJ, 782, 43

Methods and analysis

SPECTRUM SYNTHESIS:

Standard LTE analysis,

hydrostatic MARCS models atmospheres (Gustafsson et al. 2008).

Spectral synthesis codes: *WIDMO* (Schmidt et al. 2006), *Turbospectrum* (Plez 2012).

Semi–automatic X² minimization: *Simplex* algorithm (Brandt 1998).

Measured abundances: C, N, O, Sc, Ti, Fe, Ni & ¹²C/¹³C.

Derived abundances

Abundances derived on the scale of log (X) = log (N(X)N(H)-1) + 12.0, relative to the Solar abundances, and ${}^{12}C/{}^{13}C$.

Northern sample.

	С	Ν	О	Sc^b	Ti	Fe	Ni	¹² C/ ¹³ C
	$\log \epsilon(X)$							
	$[X]^c$							
EGAnd	7.70 ± 0.03	7.81 ± 0.04	8.37 ± 0.01	3.34 ± 0.05	4.80 ± 0.04	6.93 ± 0.01	5.90 ± 0.07	7.0 ± 0.3
	-0.73 ± 0.08	-0.02 ± 0.09	-0.32 ± 0.06	$+0.18 \pm 0.09$	-0.13 ± 0.08	-0.54 ± 0.05	-0.30 ± 0.11	
AXPer	7.84 ± 0.01	8.05 ± 0.03	8.41 ± 0.02	3.87 ± 0.07	5.04 ± 0.06	7.21 ± 0.06	6.26 ± 0.06	9.5 ± 0.3
	-0.59 ± 0.06	$+0.22 \pm 0.08$	-0.28 ± 0.07	$+0.71 \pm 0.11$	$+0.11 \pm 0.10$	-0.26 ± 0.10	$+0.06 \pm 0.10$	
T CrB	8.40 ± 0.02	8.65 ± 0.04	8.79 ± 0.01		5.12 ± 0.09	7.82 ± 0.04	6.57 ± 0.06	
	-0.03 ± 0.07	$+0.82 \pm 0.09$	$+0.10 \pm 0.06$		$+0.19 \pm 0.13$	$+0.35 \pm 0.08$	$+0.37 \pm 0.10$	
FG Ser	8.08 ± 0.01	7.83 ± 0.03	8.52 ± 0.01		4.79 ± 0.06	7.39 ± 0.02	6.23 ± 0.05	
	-0.35 ± 0.06	$0.00~\pm~0.08$	-0.17 ± 0.06		-0.14 ± 0.10	-0.08 ± 0.06	$+0.03 \pm 0.09$	
V443 Her	8.18 ± 0.02	8.07 ± 0.03	8.62 ± 0.01		4.97 ± 0.10	7.45 ± 0.04	6.29 ± 0.05	
	-0.25 ± 0.07	$+0.24 \pm 0.08$	-0.07 ± 0.06		$+0.04 \pm 0.14$	-0.02 ± 0.08	$+0.09~\pm~0.09$	
V1413 Aql	8.10 ± 0.05	7.74 ± 0.10	8.31 ± 0.03		4.45 ± 0.14	7.35 ± 0.07	6.35 ± 0.12	
	-0.33 ± 0.10	-0.09 ± 0.15	-0.38 ± 0.08		-0.48 ± 0.18	-0.12 ± 0.11	$+0.15 \pm 0.16$	
BF Cyg	7.87 ± 0.03	8.23 ± 0.08	8.52 ± 0.01	3.89 ± 0.15	4.89 ± 0.10	7.22 ± 0.03	6.02 ± 0.06	6.1 ± 0.5
	-0.56 ± 0.08	$+0.40 \pm 0.13$	-0.17 ± 0.06	$+0.73 \pm 0.19$	-0.04 ± 0.14	-0.25 ± 0.07	$-0.18~\pm~0.10$	
CHCyg	8.26 ± 0.01	8.20 ± 0.02	8.66 ± 0.01		5.06 ± 0.08	7.60 ± 0.05	6.39 ± 0.07	
	-0.17 ± 0.06	$+0.37 \pm 0.07$	-0.03 ± 0.06		$+0.13 \pm 0.12$	$+0.13 \pm 0.09$	$+0.19 \pm 0.11$	
QWSge	8.30 ± 0.03	8.20 ± 0.07	8.67 ± 0.02	4.25 ± 0.12	5.28 ± 0.09	7.57 ± 0.10	6.54 ± 0.10	$13.9~\pm~0.8$
	-0.13 ± 0.08	$+0.37 \pm 0.12$	-0.02 ± 0.07	$+1.09 \pm 0.16$	$+0.35 \pm 0.13$	$+0.10 \pm 0.14$	$+0.34 \pm 0.14$	
CI Cyg	7.97 ± 0.04	8.17 ± 0.07	8.50 ± 0.02	4.52 ± 0.14	5.25 ± 0.06	7.37 ± 0.03	6.17 ± 0.10	12.6 ± 1.1
	-0.46 ± 0.09	$+0.34 \pm 0.12$	-0.19 ± 0.07	$+1.36 \pm 0.18$	$+0.32 \pm 0.10$	-0.10 ± 0.07	-0.03 ± 0.14	
PU Vul	8.00 ± 0.02	7.97 ± 0.03	8.34 ± 0.01	3.37 ± 0.09	4.35 ± 0.06	7.10 ± 0.02	5.90 ± 0.09	$16.2~\pm~0.8$
	-0.43 ± 0.07	$+0.14 \pm 0.08$	-0.35 ± 0.06	$+0.21 \pm 0.13$	-0.58 ± 0.10	-0.37 ± 0.06	-0.30 ± 0.13	
V1329 Cyg	8.45 ± 0.03	8.27 ± 0.07	8.66 ± 0.02	4.36 ± 0.08	5.09 ± 0.06	7.59 ± 0.05	6.35 ± 0.06	24.0 ± 1.5
	$+0.02 \pm 0.08$	$+0.44 \pm 0.12$	-0.03 ± 0.07	$+1.20 \pm 0.12$	$+0.16 \pm 0.10$	$+0.12 \pm 0.09$	$+0.15 \pm 0.10$	
AG Peg	7.62 ± 0.03	7.82 ± 0.06	8.18 ± 0.02	3.60 ± 0.04	4.61 ± 0.05	6.96 ± 0.02	5.81 ± 0.03	5.2 ± 0.1
	-0.81 ± 0.08	-0.01 ± 0.11	-0.51 ± 0.07	$+0.44 \pm 0.08$	-0.32 ± 0.09	-0.51 ± 0.06	-0.39 ± 0.07	
Z And	8.11 ± 0.03	8.17 ± 0.06	8.56 ± 0.02	4.13 ± 0.12	5.01 ± 0.11	7.41 ± 0.04	6.33 ± 0.11	10.5 ± 0.9
	-0.32 ± 0.08	$+0.34 \pm 0.11$	-0.13 ± 0.07	$+0.97 \pm 0.16$	$+0.08 \pm 0.15$	-0.06 ± 0.08	$+0.13 \pm 0.15$	
Sun	8.43 ± 0.05	7.83 ± 0.05	8.69 ± 0.05	3.16 ± 0.04	4.93 ± 0.04	7.47 ± 0.04	6.20 ± 0.04	

Position in the equatorial and the Galactic coordinate systems

Black-grid – the Equatorial coordinate system. **Green-lines** – the Galactic coordinate systems.

Southern sample dominated by objects concentrated around the Galactic center. Northern sample dominated by the Galactic disc.

Metallicity

Median of [Fe/H] distribution at ~-0.2 dex (consistent with a disk populations)

Carbon and Nitrogen abundances.

Evolutionary status, mixing and interactions

Evidences of the 1-st dredge-up in the SySt red giants.

Increase in ^{14}N , depletion of ^{12}C , and decreased $^{12}C/^{13}C$.

- ¹²C/¹³C too low (Lü et al. 2008) mixing from the 1-st dredge-up is insufficient,
- thermohaline mixing (eg. Charbonnel & Zahn 2007) is a likely possibility,
- it seems that binary interaction has not significantly affected the evolution of symbiotic giants.

O/N, C/N, and C/O in symbiotic giants and symbiotic nebulae

'Photospheric' O/N and C/N ratios in symbiotic gaints (*coloured circles*) compared with those in symbiotic nebulae (*pentagons*: Nussbaumer et al. 1988, Schmid & Schild 1990, Pereira 1995, Schmidt et al. 2006).

Theoretical values for ejecta from 0.65 M_☉ white dwarf during nova ouburst (*magenta croses*) Kovetz & Prialnik (1997) C/O ratios in symbiotic gaints versus those observed in nebulae around of these SySt. C/O ratio grows continuously after active phase in symbiotic LMC S63.

α **elements** [O/Fe] versus [Fe/H]

APOGEE DR16 release (grey points) and the extracted sample of giant stars (orange points) corresponding to the atmospheric parameters (3100 \leq Teff \leq 4100 K, and 0 \leq log g \leq 1.5) similar to our sample of SySt.

- most giants in Galactic disk,
- a few in the extended thick-disk/halo.

Too high T_{eff} adopted in literature at least for some yellow giants: eg. CD-43°14304

Long-term program on HRS/SALT to monitor the yellow SySt is underway!

Poster 05

α elements [O/Fe] & [Ti/Fe] versus [Fe/H]

Relative abundances of [O/Fe] and [Ti/Fe] versus [Fe/H] of our SySts (northern and southern samples)

compared to stars from various Galactic populations extracted from APOGEE data set for: thin-disc, thick-disc, halo, and bulge stars

Most of SySt belong to the disc or bulge populations with a few halo candidates.

Kinematics. Toomre diagram

Northern sample – mainly thin- and rarely thick-disc populations

Southern sample – more concentrated on the Galactic bulge – looks to have representatives in all populations including the Galactic halo

Thin-disc: $V_{tot} \le 50 \text{ km/s}$

Thick-disc: $70 \le V_{tot} \le 180 \text{ km/s}$

Halo: V_{tot} > 200 km/s

 $V_{tot} = (U^2 + V^2 + W^2)^{0.5}$

Rough criteria for populations in Toomre diagram after Bensby, Feltzing & Oey (2014)

Kinematics. Toomre diagram

Color-coded are added information on chemical properties: [Fe/H] (left) and [O/Fe] (right)

CD-43°14304

Summary

- Generally slightly sub-solar metallicity, with a median at [Fe/H] ~ –0.2 dex.
- Enhanced ¹⁴N, depleted ¹²C, and decreased ¹²C/¹³C all these giants have experienced the 1-st dredge-up.
- Comparison with theoretical predictions indicates that additional mixing processes had to occur.
- Relative O and Fe abundances agree with those represented by Galactic disc and bulge giant populations, with a few cases thay can be attributed to membership in the extended thick-disc/halo.

Thank you