Submitted to MNRAS

The cosmic rate of Pair-Instability Supernovae

Francesco Gabrielli, Andrea Lapi, Lumen Boco, Cristiano Ugolini, Guglielmo Costa, Cecilia Sgalletta, Kendall Shepherd, Ugo Niccolò Di Carlo, Alessandro Bressan, Marco Limongi, Mario Spera

Francesco Gabrielli, PhD student

Symbiotic stars conference, Prague, 07/06/2024

 $100 \ M_{\odot}$

 $140 \ M_{\odot}$

 $260 M_{\odot}$

 $100 \ M_{\odot}$

 $140 \ M_{\odot}$

 $260 M_{\odot}$

 $100 \ M_{\odot}$

 $140 \ M_{\odot}$

 $260 M_{\odot}$

PPISN

 $100 \ M_{\odot}$

 $140 \ M_{\odot}$

 $260 M_{\odot}$

only candidate identifications (e.g. Super-Luminous Supernovae, SLSNe)

only candidate identifications (e.g. Super-Luminous Supernovae, SLSNe) several hundreds CCSN observations

$L_{PISN} \lesssim 10^2 L_{CCSN}$

only candidate identifications (e.g. Super-Luminous Supernovae, SLSNe) several hundreds CCSN observations

 $L_{\rm PISN} \lesssim 10^2 L_{\rm CCSN}$

where are the PISNe?

host galaxies?

only candidate identifications (e.g. Super-Luminous Supernovae, SLSNe) several hundreds CCSN observations

 $L_{\rm PISN} \lesssim 10^2 L_{\rm CCSN}$

where are the PISNe?

host galaxies?

intrinsically few

observational issues

only candidate identifications (e.g. Super-Luminous Supernovae, SLSNe) several hundreds CCSN observations

 $L_{\rm PISN} \lesssim 10^2 L_{\rm CCSN}$

where are the PISNe?

host galaxies?

intrinsically few

observational issues

cosmic PISN rate density

 $\frac{dN_{PISN}}{dtdV}(z) = \int dZ \, \frac{dM_{SFR}}{dtdVdZ}(z,Z) \times \frac{dN_{PISN}}{dM_{SFR}}(Z)$

cosmic PISN rate density

 $\frac{dN_{PISN}}{dtdV}(z) = \int dZ \frac{dM_{SFR}}{dtdVdZ}(z,Z) \times \frac{dN_{PISN}}{dM_{SFR}}(Z)$

explore dependence on

stellar evolution simulations

galaxy evolution model

Z-dependent Star Formation Rate Density (SFRD)

 $\frac{dM_{SFR}(z,Z)}{dt\,dVdZ}$

 $dM_{SFR}(z,Z)$

dt dV dZ

Z-dependent Star Formation Rate Density (SFRD)

Z-dependent Star Formation Rate Density (SFRD)

 $\frac{dM_{SFR}(z,Z)}{dt\,dVdZ}$

 $\frac{dN_{PISN}}{dM_{SFR}}(Z) \propto \int_{M_{entry}}^{M_{exit}} \phi(M) dM$

 $\frac{dN_{PISN}}{dM_{SFR}}(Z) \propto \int_{M_{entry}}^{M_{exit}} \phi(M) dM$

Kroupa IMF $[0.1 \ M_{\odot}, \ M_{up}]$

 $150 \ M_{\odot}$ $300 \ M_{\odot}$

 $\frac{dN_{PISN}}{dM_{SFR}}(Z) \propto \int_{M_{entry}}^{M_{exit}} \phi(M) dM$

Kroupa IMF $[0.1 M_{\odot}, M_{up}]$

 $150 \ M_{\odot}$ $300 \ M_{\odot}$

 $[45, 120] M_{\odot}$ $[55, 110] M_{\odot}$ $[60, 105] M_{\odot}$

PARSEC

Bressan et al. 2012, Costa et al. 2019, 2021 Spera & Mapelli 2017, Iorio et al 2022

FRANEC

Chieffi & Limongi 2013, Limongi & Chieffi 2018

Kroupa IMF $[0.1 M_{\odot}, M_{up}]$

 $150 \ M_{\odot}$ $300 \ M_{\odot}$

single stars

 $[45, 120] M_{\odot}$ $[55, 110] M_{\odot}$ $[60, 105] M_{\odot}$

PARSEC

Bressan et al. 2012, Costa et al. 2019, 2021 Spera & Mapelli 2017, Iorio et al 2023

FRANEC

Chieffi & Limongi 2013, Limongi & Chieffi 2018

stellar variations

				and the second second
name	stellar code	$M_{ m CO}/M_{\odot}$	$M_{ m up}/M_{\odot}$	Z _{max}
Р	FRANEC	60-105	150	1.5×10^{-3}
M1	PARSEC-I	55-110	150	1.5×10^{-3}
M2	FRANEC	45-120	150	5.5×10^{-3}
F	PARSEC-I	55-110	300	6.6×10^{-3}
M3	PARSEC-II	45-120	150	1.0×10^{-2}
0	PARSEC-II	45-120	300	1.7×10^{-2}

stellar variations

1					
	name	stellar code	$M_{ m CO}/M_{\odot}$	$M_{ m up}/M_{\odot}$	Z _{max}
	Р	FRANEC	60-105	150	1.5×10^{-3}
	M1	PARSEC-I	55-110	150	1.5×10^{-3}
	M2	FRANEC	45-120	150	5.5×10^{-3}
	F	PARSEC-I	55-110	300	6.6×10^{-3}
	M3	PARSEC-II	45-120	150	1.0×10^{-2}
	0	PARSEC-II	45-120	300	1.7×10^{-2}
	-				

PARSEC (Bressan et al. 2012, Costa et al. 2019, 2021)

> SEVN (Iorio et al 2023)

population of single stars

population of binaries

$$f_{bin} = 0.50$$

stellarvariations

name	stellar code	$M_{ m CO}/M_{\odot}$	$M_{ m up}/M_{\odot}$	Z _{max}
Р	FRANEC	60-105	150	1.5×10^{-3}
M 1	PARSEC-I	55-110	150	1.5×10^{-3}
M2	FRANEC	45-120	150	5.5×10^{-3}
F	PARSEC-I	55-110	300	6.6×10^{-3}
M3	PARSEC-II	45-120	150	1.0×10^{-2}
0	PARSEC-II	45-120	300	1.7×10^{-2}

galacticvariations

 σ_Z

 σ_Z

host galaxy properties

variation F $\sigma_Z = 0.15$

host galaxy properties

N -2.0

-2.5

-3.0

-3.5

-4.0 + 6

7

9

 $\log(M_{\star}[M_{\odot}])$

8

10

11

12

2

10

12

6

 $\log(\text{PISN rate}[yr^{-1} dex^{-1}])$

2 -

1 -

0

variation F $\sigma_Z = 0.15$

host galaxy properties

 $Z_{max} = 8 \times 10^{-3}$

variation F $\sigma_Z = 0.15$

 $Z \lesssim Z_{max}$

Pop II stars main PISN progenitors, not Pop III

CAVEAT: SFRD and IMF at high z highly uncertain

strong dependence on stellar and galactic variations

PISN rate down to $\sim 10^{-4}/\text{yr Gpc}^3$ (z = 0)

intrinsically few

strong dependence on stellar and galactic variations

PISN rate down to $\sim 10^{-4}/\text{yr Gpc}^3$ (z = 0)

intrinsically few

possible (or lack of) future PISN observations could pose constraints on

maximum stellar Z to have PISN upper limit of stellar IMF dispersion of galaxy Z distribution in z

PISN contribution from binaries similar to single stars

PISN contribution from binaries similar to single stars

main contribution to PISN rate from $Z \sim 10^{-3} - 10^{-2}$

Pop II stars main PISN progenitors, not Pop III

PISN contribution from binaries similar to single stars

main contribution to PISN rate from $Z \sim 10^{-3} - 10^{-2}$

Pop II stars main PISN progenitors, not Pop III

single galaxy (M_{\star} , Z , ψ , z) contribution to PISN rate

possible indications to future observational campaigns from host galaxy properties

where are the PISNe?

intrinsically few

observational issues

PISN detection rate with JWST

Back-up slides

Possible reasons for missed observation

assuming theory of stellar evolution is correct

PISNe only at high z (low Z environments)

too dim to be observed

stellar Initial Mass Function (IMF) does not extend up to PISN range stars with mass > 300 M_{\odot} observed (stellar mergers?)

PISNe preferentially in dusty environments

emission blocked by dust

PISNe more rare than CCSNe

PISN emission

early times

later times

conversion of kinetic and radiation energy into thermal energy

large amounts of radioactive ${\rm ^{56}Ni}$ up to $\,\sim 60~M_{\odot}$

near-infrared band

expected PISN luminosity

typical luminosity of Core-Collapse Supernovae (CCSNe) routinely observed in Local Universe

 $L_{PISN} \lesssim 10^{44} \ erg/s$ $L_{CCSN} \sim 10^{42} \ erg/s$

Davidson et al. 2017, Weaver et al. 2023

Speagle et al. 2014, Popesso et al. 2023

Mannucci et al. 2010, Curti et al. 2020, 2023

Galaxy Stellar Mass Functions

Galaxy Main Sequence

$M_{entry/exit}$ ranges

Z MCO	1×10^{-4}	1×10^{-3}	4×10^{-3}	8×10^{-3}	1×10^{-2}	2×10^{-2}
			PARSEC-I			
45-120	108-257	109-435	158-458	178-222	-	-
55-110	126-237	128-382	195-415	-	-	-
60-105	138-228	139-355	213-394	-	-	-
PARSEC-II						
45-120	107-229	112-239	92-221	111-294	133-366	-
55-110	117-150 153-211	130-227	109-202	138-270	166-335	-
60-105	125-145 158-203	140-221	118-193	151-258	182-320	-
FRANEC						
45-120	111-262	113-272	136-415	183-565	220-600	-
55-110	131-242	134-251	173-378	233-514	282-600	-
60-105	141-232	145-240	192-360	259-488	313-592	-

 $\rightarrow \alpha_{GSMF}(z)$ $\alpha_{GSMF} = -1.45$

PISN / CCSN ratio

 $f^{50} M_{\odot}$ $\frac{dN_{CCSN}}{dM_{SFR}}$ $\phi(M) dM$ $J_{8 M_{\odot}}$

variation $P (Z_{max} = 1.5 \times 10^{-3})$ 0.15 2.5×10^{-9} 1.4×10^{-7} 2.3×10^{-7} 0.35 9.2×10^{-6} 3.5×10^{-5} 5.5×10^{-5} 0.70 1.7×10^{-4} 2.4×10^{-4} 3.3×10^{-4} variation $F (Z_{max} = 6.6 \times 10^{-3})$ 0.15 9.2×10^{-4} 2.3×10^{-3} 0.35 2.2×10^{-4} 3.5×10^{-3} 5.2×10^{-3} 0.70 4.3×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	σ_Z	$\mathrm{PI/CC} \ (z=0)$	$\text{PI/CC} (z = z_{\text{peak}}^{\text{PI}})$	PI/CC (z = 6)			
0.15 2.5×10^{-9} 1.4×10^{-7} 2.3×10^{-7} 0.35 9.2×10^{-6} 3.5×10^{-5} 5.5×10^{-5} 0.70 1.7×10^{-4} 2.4×10^{-4} 3.3×10^{-4} variation F ($Z_{max} = 6.6 \times 10^{-3}$) 0.15 9.2×10^{-4} 2.3×10^{-3} 0.35 2.2×10^{-4} 3.5×10^{-3} 5.2×10^{-3} 0.70 4.3×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	variation $P(Z_{\text{max}} = 1.5 \times 10^{-3})$						
0.35 9.2×10^{-6} 3.5×10^{-5} 5.5×10^{-5} 0.70 1.7×10^{-4} 2.4×10^{-4} 3.3×10^{-4} variation $F(Z_{max} = 6.6 \times 10^{-3})$ 0.15 9.2×10^{-4} 2.3×10^{-3} 0.35 2.2×10^{-4} 3.5×10^{-3} 0.35 2.2×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	0.15	2.5×10^{-9}	1.4×10^{-7}	2.3×10^{-7}			
0.70 1.7×10^{-4} 2.4×10^{-4} 3.3×10^{-4} variation $F (Z_{max} = 6.6 \times 10^{-3})$ 0.15 9.2×10^{-4} 2.3×10^{-3} 4.5×10^{-3} 0.35 2.2×10^{-3} 3.5×10^{-3} 5.2×10^{-3} 0.70 4.3×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	0.35	9.2×10^{-6}	3.5×10^{-5}	5.5×10^{-5}			
variation $F (Z_{max} = 6.6 \times 10^{-3})$ 0.15 9.2×10^{-4} 2.3×10^{-3} 4.5×10^{-3} 0.35 2.2×10^{-3} 3.5×10^{-3} 5.2×10^{-3} 0.70 4.3×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	0.70	1.7×10^{-4}	2.4×10^{-4}	3.3×10^{-4}			
0.15 9.2×10^{-4} 2.3×10^{-3} 4.5×10^{-3} 0.35 2.2×10^{-3} 3.5×10^{-3} 5.2×10^{-3} 0.70 4.3×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	variation $F(Z_{\text{max}} = 6.6 \times 10^{-3})$						
0.35 2.2×10^{-3} 3.5×10^{-3} 5.2×10^{-3} 0.70 4.3×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	0.15	9.2×10^{-4}	2.3×10^{-3}	4.5×10^{-3}			
0.70 4.3×10^{-3} 5.4×10^{-3} 6.6×10^{-3}	0.35	2.2×10^{-3}	3.5×10^{-3}	5.2×10^{-3}			
0.70 7.5 × 10 5.7 × 10 0.0 × 10	0.70	4.3×10^{-3}	5.4×10^{-3}	6.6×10^{-3}			
variation O ($Z_{\text{max}} = 1.7 \times 10^{-2}$)							
0.15 1.5×10^{-2} 2.2×10^{-2} 2.8×10^{-2}	0.15	1.5×10^{-2}	2.2×10^{-2}	2.8×10^{-2}			
0.35 1.5×10^{-2} 2.0×10^{-2} 2.4×10^{-2}	0.35	1.5×10^{-2}	2.0×10^{-2}	2.4×10^{-2}			
0.70 1.5×10^{-2} 1.7×10^{-2} 1.9×10^{-2}	0.70	1.5×10^{-2}	1.7×10^{-2}	1.9×10^{-2}			

Host galaxy properties

variation P $\sigma_{Z} = 0.15$

 $Z \lesssim Z_{max}$

properties

Pop III

peak of PISN rate at $Z \sim 10^{-2} - 10^{-3}$

Pop II stars main PISN progenitors, not Pop III

Pop III SFRD Hartwig et al. 2022

CAVEAT: SFRD and IMF at high z highly uncertain

 $M_{up} = 300 \ M_{\odot}$ to $600 \ M_{\odot}$

 $\frac{dN_{PISN}}{dM_{SFR}}(Z)$

PISN rate

FMR Mannucci et al. 2010

$$12 + log(O/H) = 8.90 + 0.37m - 0.14s - 0.19m^{2} + 0.12ms - 0.054s^{2}$$

$$m = \log(M_{\star}) - 10$$
$$s = \log(SFR)$$

$$\log Z = 12 + \log(O/H) - 10.58$$

FMR Mannucci et al. 2010

FMR Mannucci et al. 2011

$$12 + \log(O/H) = 8.90 + 0.37m - 0.14s - 0.19m^{2}$$
$$+ 0.12ms - 0.054s^{2} \quad \text{for } \mu_{0.32} \ge 9.5$$
$$= 8.93 + 0.51(\mu_{0.32} - 10) \text{ for } \mu_{0.32} < 9.5.$$

$$\mu_{\alpha} = \log(M_{*}) - \alpha \log(\text{SFR})$$
$$m = \log(M_{\star}) - 10$$
$$s = \log(\text{SFR})$$