Symbiotic stars, weird novae, and related embarrassing binaries, 07/06/2024

# 56 Ursae Majoris: a binary evolution puzzle



#### Ana Escorza

with D. Karinkuzhi, A. Jorissen, S. Van Eck, J. T. Schmelz, G. L. Verschuur, H. M. J. Boffin, R. J. De Rosa, and H. Van Winckel

- G8III + faint lower-mass companion (Keenan & McNeil 1989)
- V = 5.03 mag (Ducati 2002)
- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)



- G8III + faint lower-mass companion (Keenan & McNeil 1989)
- V = 5.03 mag (Ducati 2002)
- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)



- G8III + faint lower-mass companion (Keenan & McNeil 1989)
- V = 5.03 mag (Ducati 2002)
- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)



- G8III + faint lower-mass companion (Keenan & McNeil 1989)
- V = 5.03 mag (Ducati 2002)
- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)
- The giant was classified as a mild barium star (Pilachowski 1975; Keenan & Wilson 1977)



#### 56 Ursae Majoris as a Barium star

Main-sequence stars

 $M_1 > M_2$ 

- G8III + faint lower-mass companion (Keenan & McNeil 1989)
- V = 5.03 mag (Ducati 2002)
- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)
- The giant was classified as a mild barium star (Pilachowski 1975; Keenan & Wilson 1977)







#### The masses of the WD companions of Ba stars

Combining RV data with Hipparcos and Gaia astrometry and the Hip-Gaia catalogue of accelerations, we could constrain orbital inclinations and secondary masses for 60 WD companions of Ba stars (Escorza & De Rosa 2023)

work done using ORVARA (Brandt et al. 2021) and the HGCA (Brandt 2018, 2021)



#### The masses of the WD companions of Ba stars

#### RV data + Hipparcos-Gaia acceleration

#### work done using ORVARA (Brandt et al. 2021) and the HGCA (Brandt 2018, 2021)

#### CAMCOR HIPPARCOS HIPPARCOS -10HERMES GAIA GAIA -364000 -111.5 2000 -38-12 (mas/yr) u<sub>6</sub> (mas/yr) RV (m/s) 1.4 -40M<sub>comp</sub>(M<sub>o</sub> ha 1.3 -2000-42-15-16-40001.2 -44-17 2500 0.5 1.1 0.5 0-0 00 00 0.0 0.0 -2500 -0.52000 2005 2005 2010 1970 1980 1990 2010 2020 1990 1995 2000 2010 2015 1990 1995 2000 2015 Epoch (yr) Epoch (year) Epoch (year)

#### (Escorza & De Rosa 2023)



The masses of the <del>WD</del> companions of <del>Ba</del> stars

RV data + Hipparcos-Gaia acceleration

+ Hipparcos epoch astrometry => 56 UMa has a 1.31  $\pm$  0.12 M<sub> $\odot$ </sub> companion





56 UMa has a 1.31  $\pm$  0.12 M $_{\odot}$  companion

#### 56 UMa has a 1.31 $\pm$ 0.12 $M_{\odot}$ companion





# Could the AGB progenitor of such a WD have made a Ba star?





# Could the AGB progenitor of such a WD have made a Ba star?











#### Jorissen et al. (2019); Escorza et al. (2023)



#### The heavy metal abundances of the red giant



#### The heavy metal abundances of the red giant





Escorza et al. (2023); comparison CEMP stars from Karinkuzhi et al. (2021)

#### The neutral gas cavity around 56 UMa



#### The neutral gas cavity around 56 UMa

- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)



#### The neutral gas cavity around 56 UMa

- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)
- Mild r/s enhancement (Escorza et al. 2023)
- 1.31 Mo companion (Escorza et al. 2023)
- SN remnant-looking cavity around the system (Schmelz & Verschuur 2022, Escorza et al. 2023)



- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)
- Mild r/s enhancement (Escorza et al. 2023)
- 1.31 Mo companion (Escorza et al. 2023)
- SN remnant-looking cavity around the system (Schmelz & Verschuur 2022, Escorza et al. 2023)



- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)
- Mild r/s enhancement (Escorza et al. 2023)
- 1.31 Mo companion (Escorza et al. 2023)
- SN remnant-looking cavity around the system (Schmelz & Verschuur 2022, Escorza et al. 2023)



- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)
- Mild r/s enhancement (Escorza et al. 2023)
- 1.31 Mo companion (Escorza et al. 2023)
- SN remnant-looking cavity around the system (Schmelz & Verschuur 2022, Escorza et al. 2023)

Single MS discarded in favour of an evolved star Lack of rubidium? Super AGB cavity?

MS+MS: heavy metals? MS+WD: initial masses?

- Strong detection in the Galex far-UV band (Bianchi et al. 2011, 2017)
- Two weak N IV] and O III] emission lines detected in a IUE UV spectrum (Böhm-Vitense et al. 1984)
- High X-ray luminosity, Lx = 1.07×10<sup>29</sup> erg s<sup>-1</sup> (Gondoin 1999)
- Mild r/s enhancement (Escorza et al. 2023)
- 1.31 Mo companion (Escorza et al. 2023)
- SN remnant-looking cavity around the system (Schmelz & Verschuur 2022, Escorza et al. 2023)



Symbiotic stars, weird novae, and related embarrassing binaries, 07/06/2024

Ana Escorza

aescorza@iac.es

# Thanks!





 Table 1. Stellar and orbital parameters of the 56 UMa system.

| Parameter                                              | Median $\pm 1 \sigma$     |
|--------------------------------------------------------|---------------------------|
| Temperature, $T_{\rm eff}$ [K]                         | $4917 \pm 34$             |
| Surface gravity, $\log g$                              | $2.3 \pm 0.6$             |
| Metallicity, [Fe/H]                                    | -0.05                     |
| Microturbulence, $\xi$ [km s <sup>-1</sup> ]           | 1.56                      |
| Primary mass, $M_1 [M_{\odot}]$                        | $4.3 \pm 0.2$             |
| Period, P [days]                                       | $16911^{+438}_{-401}$     |
| Eccentricity, e                                        | $0.562^{+0.012}_{-0.012}$ |
| Semi-major axis, a [AU]                                | $22.9^{+1.0}_{-1.1}$      |
| Argument of periastron, $\omega_1$ [°]                 | $286^{+2.3}_{-2.3}$       |
| Time of periastron, $T_0$ [HJD]                        | $2468401^{+432}_{-385}$   |
| Parallax, $\varpi$ [mas]                               | $5.86^{+0.03}_{-0.04}$    |
| Ascending node, $\Omega$ [°]                           | $60^{+3}_{-3}$            |
| Inclination, <i>i</i> [°]                              | $68^{+3.6}_{-3.4}$        |
| Secondary mass, $M_2 [M_{\odot}]$                      | $1.31_{-0.12}^{+0.11}$    |
| Center-of-mass velocity [km s <sup>-1</sup> ]          | $0.13 \pm 0.01$           |
| Center-of-mass $\mu_{\alpha*}$ [mas yr <sup>-1</sup> ] | $-37.32 \pm 0.01$         |
| Center-of-mass $\mu_{\delta}$ [mas yr <sup>-1</sup> ]  | $-12.18 \pm 0.01$         |

**Table D.1.** Individual abundances of the giant component in56 UMa

|                      | Z  | $\log \epsilon^{\rm a}_{\odot}$ | $\log \epsilon$ | $\sigma_{s}(N)$ | $[X/Fe] \pm \sigma_{[X/Fe]}$ |
|----------------------|----|---------------------------------|-----------------|-----------------|------------------------------|
| Cb                   | 6  | 8.43                            | 8.20            | 0.06(4)         | $-0.18 \pm 0.15$             |
| $^{12}C/^{13}C$      |    |                                 | 19              |                 |                              |
| N <sup>c</sup>       | 7  | 7.83                            | 8.40            | 0.09(30)        | $0.62 \pm 0.21$              |
| Od                   | 8  | 8.69                            | 8.70            | 0.00(2)         | $0.06 \pm 0.22$              |
| Na I                 | 11 | 6.24                            | 6.40            | 0.10(4)         | $0.21 \pm 0.40$              |
| Mg I                 | 12 | 7.60                            | 7.50:           | 0.10(2)         | $-0.05 \pm 0.16$             |
| Fe I                 | 26 | 7.50                            | 7.45            | 0.10(65)        | -                            |
| Rb I                 | 37 | 2.52                            | 2.50:           | 0.00(2)         | $0.03 \pm 0.10$              |
| Sr I                 | 38 | 2.87                            | 3.30:           | 0.10(1)         | $0.48 \pm 0.35$              |
| Sr I <sub>NLTE</sub> | 38 | 2.87                            | 3.49:           | 0.10(1)         | $0.67 \pm 0.35$              |
| YII                  | 39 | 2.21                            | 2.40            | 0.05(7)         | $0.24 \pm 0.17$              |
| Zr I                 | 40 | 2.58                            | 2.43            | 0.13(3)         | $-0.10\pm0.30$               |
| Zr II                | 40 | 2.58                            | 2.65            | 0.06(2)         | $0.12 \pm 0.30$              |
| Ba II                | 56 | 2.18                            | 2.72:           | 0.09(2)         | $0.59 \pm 0.11$              |
| La II                | 57 | 1.10                            | 1.40            | 0.12(8)         | $0.35 \pm 0.22$              |
| Ce II                | 58 | 1.58                            | 1.70            | 0.13(8)         | 0.17±0.24                    |
| Pr II                | 59 | 0.72                            | 0.75            | 0.05(3)         | $0.08 \pm 0.25$              |
| Nd II                | 60 | 1.42                            | 1.72            | 0.13(13)        | $0.35 \pm 0.22$              |
| Sm II                | 62 | 0.96                            | 1.08            | 0.13(4)         | $0.17 \pm 0.32$              |
| Eu II                | 63 | 0.52                            | 0.70            | 0.00(2)         | $0.23 \pm 0.32$              |
| Gd II                | 64 | 1.10                            | 1.40            | 0.10(1)         | $0.35 \pm 0.21$              |
| Dy II                | 66 | 1.10                            | 1.30            | 0.10(1)         | $0.25 \pm 0.18$              |
| Hf II                | 72 | 0.85                            | 1.10:           | 0.00(2)         | $0.30 \pm 0.32$              |
| Os II                | 76 | 1.40                            | 1.60:           | 0.10(1)         | $0.25 \pm 0.20$              |