A THEORY OF MASS TRANSFER IN BINARY STARS

Jakub Cehula

Institute of Theoretical Physics, Charles University, Prague, Czech Republic

Cehula & Pejcha (2023, MNRAS, 524, 471–490) **Cehula** & Pejcha (2024, in prep.)

Symbiotic stars, weird novae, and related embarrassing binaries June 3 – 7, 2024, Prague, Czech Republic

European Research Council

MOTIVATION

- mass transfer responsible for X-ray binaries, cataclysmic variables, type Ia supernovae, …
- understanding binary mass transfer => accurate differentiation between:
	- 1. stable mass transfer
	- 2. unstable mass transfer \rightarrow common-envelope evolution
- standard mass-transfer models suffer from conceptual and practical difficulties => new model needed

MAIN GOAL

• donor's mass-loss rate:

 $\dot{M}_{\rm d} = \dot{M}_{\rm d} (\delta R_{\rm d})$

 \triangleright where δR_d is the relative radius excess:

$$
\delta R_{\rm d} \equiv \frac{\Delta R_{\rm d}}{R_{\rm L}} = \frac{R_{\rm d} - R_{\rm L}}{R_{\rm L}},
$$

- $R_{\rm d}$ donor's radius, $R_{\rm L}$ Rochelobe radius
- serves as a **boundary condition** in a stellar evolution code (MESA)

NEW MODEL

ADVANTAGES

- testing for systematic errors
- stellar interior (sonically connected) **influences** mass loss
- **possible** to include additional physics (radiation, mag. field, …)
- clear analogy with stellar winds – de Laval nozzle

(Cehula & Pejcha 2023)

START

 \geq 3D Euler equations with the Roche potential

ASSUMPTIONS

- 1. Stationarity: $\partial/\partial t \rightarrow 0$
- 2. Gas flow effectively $1D \Rightarrow$ hydrostatic equilibrium in the perpendicular plane
- 3. Lowest order approximation of the Roche potential in the perpendicular plane
- 4. Polytropic approx. in the perpendicular plane

END

 \geq 1D Euler equations with the Roche potential

- 30 M_{\odot} star in a binary with 7.5 M_{\odot} BH losing mass on thermal time scale evolved in Marchant et al. (2021) with MESA
- \cdot a posteriori $\dot{M}_{\rm d}$ comparison in different stages of star's evolution

(MESA: Paxton et al. 2011, 2013, 2015, 2018, 2019)

• evolution **rerun** with 'KR90' massloss prescription decreased by a factor of 2 to simulate 'new' prescription ⇒ **less stable** mass transfer

(Cehula & Pejcha 2023)

CURRENT WORK

• implementation of radiative transfer

START

 \geq 3D radiation hydrodynamics equations in the fluxlimited diffusion approximation with the Roche potential

ASSUMPTIONS

- 1. Stationarity: $\partial/\partial t \to 0$
- 2. Gas flow 1D: $\partial/\partial y \to 0$, $\partial/\partial z \to 0$
- 3. LTE: $aT^4 E_{\text{rad}} = 0$
- 4. Optically thick limit: $\lambda \rightarrow 1/3$

END

 ≥ 1 D radiation hydrodynamics equations with the Roche potential and **radiative flux**

⁽Cehula & Pejcha 2024, in prep.)

PRELIMINARY RESULTS

SUMMARY

- comparison with Marchant et al. (2021):
	- \triangleright factor of 4 lower $\dot{M}_{\rm d} \Rightarrow$ greater $\delta R_{\rm d}$ for given $\dot{M}_{\rm d} \Rightarrow$ less stable mass transfer ⇒ **favors CEE** over stable mass transfer
- comparison with Kolb & Ritter (1990):
	- \triangleright factor of 2 difference in $\dot{M}_{\rm d}$
- testing for **systematic differences** between the two models
- current work:
	- including additional physics ≡ radiative transfer (**not** possible using the standard model)
	- \triangleright preliminary results: $\dot{m} \propto \exp(\Gamma_{\rm E,mod})$

Cehula & Pejcha (2023, MNRAS, 524, 471–490)

BACKUP SLIDES

STANDARD MODEL <–> POTENTIAL

(Lubow & Shu 1975, Ritter 1988, Kolb & Ritter 1990, Pavlovskii & Ivanova 2015, Jackson et al. 2017, Marchant et al. 2021)

- possible systematic errors
- **instant** optically thin → thick transition
- stellar interior (sonically connected) does **not** influence mass loss
- **not** possible to include additional physics (radiation, mag. field, …)

$$
\dot{M}_{\rm KR} = \frac{\mathrm{d}Q}{\mathrm{d}\phi}\bigg|_{\rm L1}\,\int_{\phi_1}^{\phi_{\rm ph}} F_3\left(\Gamma\right)\left(\frac{k\bar{T}}{\bar{m}}\right)^{\frac{1}{2}}\bar{\rho}\mathrm{d}\bar{\phi},
$$

(Kolb & Ritter 1990)

START

• 3D Euler equations with the Roche potential:

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,
$$

$$
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v \otimes v + P I) = -\rho \nabla \phi_R,
$$

$$
\frac{\partial (\rho \epsilon_{\text{tot}})}{\partial t} + \nabla \cdot [(\rho \epsilon_{\text{tot}} + P) v] = 0,
$$

START

• 3D Euler equations with the Roche potential:

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,
$$

$$
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v \otimes v + P I) = -\rho \nabla \phi_R,
$$

$$
\frac{\partial (\rho \epsilon_{\text{tot}})}{\partial t} + \nabla \cdot [(\rho \epsilon_{\text{tot}} + P) v] = 0,
$$

ASSUMPTIONS:

- 1. Stationarity
- 2. Gas flow effectively $1D \Rightarrow$ hydrostatic equilibrium in the perpendicular plane
- 3. Lowest order approximation of the Roche potential in the perpendicular plane
- 4. Polytropic approx. in the perpendicular plane

START

• 3D Euler equations with the Roche potential: • 1D Euler equations with the Roche potential:

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,
$$

$$
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v \otimes v + P I) = -\rho \nabla \phi_R,
$$

$$
\frac{\partial (\rho \epsilon_{\text{tot}})}{\partial t} + \nabla \cdot [(\rho \epsilon_{\text{tot}} + P) v] = 0,
$$

ASSUMPTIONS:

- 1. Stationarity
- 2. Gas flow effectively $1D \Rightarrow$ hydrostatic equilibrium in the perpendicular plane
- 3. Lowest order approximation of the Roche potential in the perpendicular plane
- 4. Polytropic approx. in the perpendicular plane

END

 $\mathbf d$ $\frac{1}{\mathrm{d}x}$

$$
\frac{1}{v}\frac{dv}{dx} + \frac{1}{\rho Q_{\rho}}\frac{d}{dx} (\rho Q_{\rho}) = 0,
$$

$$
v\frac{dv}{dx} + \frac{1}{\rho Q_{\rho}}\frac{d}{dx} (PQ_{P}) = -\frac{d\phi_{R}}{dx},
$$

$$
(\epsilon \frac{Q_{P}}{Q_{\rho}}) - \frac{PQ_{P}}{(\rho Q_{\rho})^{2}}\frac{d}{dx} (\rho Q_{\rho}) = -\frac{d}{dx} (c_{T}^{2} \frac{Q_{P}}{Q_{\rho}}),
$$

where we are averaging in the perpendicular

plane:
$$
\rho Q_{\rho} = \int_{Q} \rho' dQ
$$
, $PQ_{P} = \int_{Q} P' dQ$,

$$
\frac{Q_P}{Q_{\rho}} = \frac{\Gamma}{2\Gamma - 1}, \text{ and:} \qquad \dot{M}_{\text{new}} = v_{\rho} Q_{\rho}
$$

4. Polytropic approx. in the perpendicular plane

SOLUTION OF NEW EQUATIONS

• 1D Euler equations with the Roche potential:

$$
\frac{1}{v}\frac{dv}{dx} + \frac{1}{\rho Q_{\rho}}\frac{d}{dx}(\rho Q_{\rho}) = 0,
$$

$$
v\frac{dv}{dx} + \frac{1}{\rho Q_{\rho}}\frac{d}{dx}(\rho Q_{P}) = -\frac{d\phi_{R}}{dx},
$$

$$
\frac{d}{dx}\left(\epsilon \frac{Q_{P}}{Q_{\rho}}\right) - \frac{PQ_{P}}{(\rho Q_{\rho})^{2}}\frac{d}{dx}(\rho Q_{\rho}) = -\frac{d}{dx}\left(c_{T}^{2}\frac{Q_{P}}{Q_{\rho}}\right),
$$

• 2-point BVP \Rightarrow numerical relaxation (Press et al. 2007)

• we still need the **EQUATION OF STATE** \rightarrow polytropic: $P = K \rho^{\Gamma}$

realistic: MESA EOS module

isothermal: $P = K \rho$

(Saumon, Chabrier, & van Horn 1995; Irwin 2004; Timmes & Swesty 2000; Potekhin & Chabrier 2010; Jermyn et al. 2021)

algebraic

solution

$STELLAR$ WINDS \equiv WAY TO NEW MT MODEL

- analogies between:
	- ≥ 1 D isothermal stellar wind
	- \triangleright flow through a rocket nozzle

new model: mass transfer through the nozzle created by the Roche potential around L1

 $\phi_{\rm R} = \phi_{\rm ph} > \phi$

 $M_{\rm d}$

• hydrodynamic equations governing 1D isothermal stellar wind:

$$
-\dot{M}_* = 4\pi r^2 \rho(r) v(r) = \text{const},
$$

$$
v\frac{dv}{dr} + \frac{1}{\rho}\frac{dP}{dr} + \frac{GM_*}{r^2} = 0,
$$

$$
T(r) = T = \text{const}.
$$

• assuming ideal gas EOS:
$$
\frac{1}{v}\frac{dv}{dr} = \frac{\frac{2c_T^2}{r} - \frac{GM_*}{r^2}}{v^2 - c_T^2}
$$

$STELLAR$ WINDS \equiv WAY TO NEW MT MODEL

ANALOGY TO ROCKET NOZZLES

• hydrodynamic equations governing isothermal gas flow through axially symmetric nozzle:

$$
\dot{M}_N = \rho(l)v(l)A(l) = \rho_b v_b A_b = \text{const},
$$

$$
v\frac{dv}{dl} + \frac{1}{\rho}\frac{dP}{dl} = 0.
$$

$$
T(l) = T = \text{const}.
$$

• assuming ideal gas EOS:
$$
\frac{1}{v}\frac{dv}{dl} = \frac{\frac{c_T^2}{A}\frac{dA}{dl}}{v^2 - c_T^2},
$$

• the critical point $(v = c_T)$: $dA/dl = 0$

ANALOGY TO ROCKET NOZZLES

• considering:

• where
$$
(A = \pi r_N^2)
$$
:
\n
$$
r_N(l) = \frac{l}{\pi} \exp\left(\frac{L}{l}\right), \text{ with } L = \frac{GM_*}{2c_T^2},
$$

 $1 dv$

 $v \, dl$

• yields:

$$
\frac{c_T^2}{A} \frac{dA}{dl} \equiv \frac{2c_T^2}{r} - \frac{GM_*}{r^2}, \quad \text{for} \quad l = r,
$$

• i.e. the same momentum equation and velocity distribution as **isothermal wind**:

$$
\frac{1}{v}\frac{dv}{dr} = \frac{\frac{2c_T^2}{r} - \frac{GM_*}{r^2}}{v^2 - c_T^2}
$$

- polytropic vs. more realistic EOS: \triangleright factor of 10^2 difference in an extreme case **!**
- analytical solution agrees with the numerical for polytrope numerical for \leftrightarrow

polytrope donor's

• $\dot{M}_d(x) = \text{const.}$
-

MT rate comparison

 $\triangleright \dot{M}_{\rm new}(\Delta R_{\rm d}),$ $\Delta N_{H_P} = \text{const.}!$ \triangleright vs. optically thin (Jackson et al. 2017) \triangleright vs. optically thick (Kolb & Ritter 1990)

(b)

on RGB

(a) $1M_{\odot}$ donor on the main sequence

CURRENT WORK IN EQUATIONS

START

• radiation hydrodynamics equations in the flux-limited diffusion approximation in the mixed-frame formulation (e.g. Calderón et al. 2021):

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,
$$
\n
$$
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v \otimes v) + \nabla P_{\text{gas}} + \lambda \nabla E_{\text{rad}} = -\rho \nabla \phi_R,
$$
\n
$$
\frac{\partial (\rho \epsilon^*)}{\partial t} + \nabla \cdot (\rho \epsilon^* v + P_{\text{gas}} v) + \lambda v \cdot \nabla E_{\text{rad}} = -c \rho \kappa_P \left(aT^4 - E_{\text{rad}}^{(0)} \right),
$$
\n
$$
\frac{\partial E_{\text{rad}}}{\partial t} + \nabla \cdot \left(\frac{3 - f}{2} E_{\text{rad}} v \right) - \lambda v \cdot \nabla E_{\text{rad}} = c \rho \kappa_P \left(aT^4 - E_{\text{rad}}^{(0)} \right) + \nabla \cdot \left(\frac{c \lambda}{\rho \kappa_R} \nabla E_{\text{rad}} \right),
$$
\n
$$
F_{\text{rad}}^{(0)} = -\frac{c \lambda}{\rho \kappa_R} \nabla E_{\text{rad}}^{(0)},
$$
\n
$$
P_{\text{rad}}^{(0)} = f^{(0)} E_{\text{rad}}^{(0)},
$$

CURRENT WORK IN EQUATIONS

START

• radiation hydrodynamics equations in the flux-limited diffusion approximation in the mixed-frame formulation:

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,
$$
\n
$$
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v \otimes v) + \nabla P_{\text{gas}} + \lambda \nabla E_{\text{rad}} = -\rho \nabla \phi_{\text{R}},
$$
\n
$$
\frac{\partial (\rho \epsilon^*)}{\partial t} + \nabla \cdot (\rho \epsilon^* v + P_{\text{gas}} v) + \lambda v \cdot \nabla E_{\text{rad}} = -c \rho \kappa_{\text{P}} \left(a T^4 - E_{\text{rad}}^{(0)} \right),
$$
\n
$$
\frac{\partial E_{\text{rad}}}{\partial t} + \nabla \cdot \left(\frac{3 - f}{2} E_{\text{rad}} v \right) - \lambda v \cdot \nabla E_{\text{rad}} = c \rho \kappa_{\text{P}} \left(a T^4 - E_{\text{rad}}^{(0)} \right) + \nabla \cdot \left(\frac{c \lambda}{\rho \kappa_{\text{R}}} \nabla E_{\text{rad}} \right),
$$
\n
$$
F_{\text{rad}}^{(0)} = -\frac{c \lambda}{\rho \kappa_{\text{R}}} \nabla E_{\text{rad}}^{(0)},
$$
\n
$$
P_{\text{rad}}^{(0)} = f^{(0)} E_{\text{rad}}^{(0)},
$$

ASSUMPTIONS:

- 1. Stationarity
- 2. Gas flow 1D
- 3. LTE: $aT^4 E_{\text{rad}} = 0$
- 4. Optically thick limit: $\lambda \rightarrow 1/3$

CURRENT WORK IN EQUATIONS

START

• radiation hydrodynamics equations in the flux-limited diffusion approximation in the mixed-frame formulation:

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,
$$
\n
$$
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v \otimes v) + \nabla P_{\text{gas}} + \lambda \nabla E_{\text{rad}} = -\rho \nabla \phi_{\text{R}},
$$
\n
$$
\frac{\partial (\rho \epsilon^*)}{\partial t} + \nabla \cdot (\rho \epsilon^* v + P_{\text{gas}} v) + \lambda v \cdot \nabla E_{\text{rad}} = -c \rho \kappa_{\text{P}} \left(a T^4 - E_{\text{rad}}^{(0)} \right),
$$
\n
$$
\frac{\partial E_{\text{rad}}}{\partial t} + \nabla \cdot \left(\frac{3 - f}{2} E_{\text{rad}} v \right) - \lambda v \cdot \nabla E_{\text{rad}} = c \rho \kappa_{\text{P}} \left(a T^4 - E_{\text{rad}}^{(0)} \right) + \nabla \cdot \left(\frac{c \lambda}{\rho \kappa_{\text{R}}} \nabla E_{\text{rad}} \right),
$$
\n
$$
F_{\text{rad}}^{(0)} = -\frac{c \lambda}{\rho \kappa_{\text{R}}} \nabla E_{\text{rad}}^{(0)},
$$
\n
$$
P_{\text{rad}}^{(0)} = f^{(0)} E_{\text{rad}}^{(0)},
$$

ASSUMPTIONS:

- 1. Stationarity
- 2. Gas flow $-1D$
- 3. LTE: $aT^4 E_{\text{rad}} = 0$
- 4. Optically thick limit: $\lambda \rightarrow 1/3$

END

• 1D radiation hydrodynamics equations with the Roche potential and radiative flux:

$$
\frac{1}{v}\frac{dv}{dx} + \frac{1}{\rho}\frac{d\rho}{dx} = 0,
$$
\n
$$
v\frac{dv}{dx} + \frac{1}{\rho}\frac{dP_{\text{gas}}}{dx} = \frac{\kappa}{c}F_{\text{rad}} - \frac{d\phi_{\text{R}}}{dx},
$$
\n
$$
\frac{d}{dx}\left[(\epsilon_{\text{tot}}\rho + P) v + F_{\text{rad}} \right] = 0,
$$
\n
$$
F_{\text{rad}} = -\frac{c}{\kappa} \frac{1}{\rho} \frac{dP_{\text{rad}}}{dx},
$$
\nwhere: $P_{\text{rad}} = \frac{1}{3} aT^4$, $E_{\text{rad}} = aT^4$.

CURRENT WORK IN EQUATIONS perpendicular

START

• radiation hydrodynamics equations in th flux-limited diffusion approximation in the mixed-frame formulation:

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,
$$
\n
$$
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v \otimes v) + \nabla P_{\text{gas}} + \lambda \nabla E_{\text{rad}} = -\rho \nabla \phi_R,
$$
\n
$$
\frac{\partial (\rho \epsilon^*)}{\partial t} + \nabla \cdot (\rho \epsilon^* v + P_{\text{gas}} v) + \lambda v \cdot \nabla E_{\text{rad}} = -c \rho \kappa_P \left(aT^4 - E_{\text{rad}}^{(0)} \right),
$$
\n
$$
\frac{\partial E_{\text{rad}}}{\partial t} + \nabla \cdot \left(\frac{3 - f}{2} E_{\text{rad}} v \right) - \lambda v \cdot \nabla E_{\text{rad}} = c \rho \kappa_P \left(aT^4 - E_{\text{rad}}^{(0)} \right) + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_{\text{rad}} \right),
$$
\n
$$
F_{\text{rad}}^{(0)} = -\frac{c\lambda}{\rho \kappa_R} \nabla E_{\text{rad}}^{(0)},
$$
\n
$$
P_{\text{rad}}^{(0)} = f^{(0)} E_{\text{rad}}^{(0)},
$$

ASSUMPTIONS:

- Stationarity
- 2. Gas flow 1D
- 3. LTE: $aT^4 E_{\text{rad}} = 0$
- 4. Optically thick limit: $\lambda \rightarrow 1/3$

1D radiation hydrodynamics equations with the Roche potential and radiative flux:

END

plane

 \mathcal{V}

$$
\frac{1}{v} \frac{dv}{dx} + \frac{1}{\rho} \frac{d\rho}{dx} = 0,
$$
\n
$$
v \frac{dv}{dx} + \frac{1}{\rho} \frac{dP_{gas}}{dx} = \frac{\kappa}{c} F_{rad} - \frac{d\phi_R}{dx},
$$
\n
$$
\frac{d}{dx} [(\epsilon_{tot}\rho + P) v + F_{rad}] = 0,
$$
\n
$$
F_{rad} = -\frac{c}{\kappa} \frac{1}{\rho} \frac{dP_{rad}}{dx},
$$
\nwhere:
$$
P_{rad} = \frac{1}{3} aT^4, \quad E_{rad} = aT^4.
$$