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MOTIVATION

• mass transfer responsible for X-ray 
binaries, cataclysmic variables, type Ia
supernovae, …

• understanding binary mass transfer => 
accurate differentiation between:

1. stable mass transfer

2. unstable mass transfer →
common-envelope evolution

• standard mass-transfer models suffer 
from conceptual and practical 
difficulties => new model needed



MAIN GOAL

• donor’s mass-loss rate:

 𝑀d =  𝑀d 𝛿𝑅d

where δ𝑅d is the relative radius excess:

𝑅d - donor’s radius, 𝑅L - Roche-
lobe radius

serves as a boundary condition in a 
stellar evolution code (MESA)



NEW MODEL

ADVANTAGES

• testing for systematic errors

• stellar interior (sonically 
connected) influences mass 
loss

• possible to include 
additional physics 
(radiation, mag. field, …)

• clear analogy with stellar 
winds – de Laval nozzle

(Cehula & Pejcha 2023)



NEW MODEL IN EQUATIONS

START

3D Euler equations with the Roche potential

ASSUMPTIONS

1. Stationarity: 𝜕/𝜕𝑡 → 0

2. Gas flow – effectively 1D ⇒ hydrostatic 
equilibrium in the perpendicular plane

3. Lowest order approximation of the Roche 
potential in the perpendicular plane

4. Polytropic approx. in the perpendicular plane

END

1D Euler equations with the Roche potential

perpendicular 
plane



RESULTS

• 30 M⊙ star in a binary 
with 7.5 M⊙ BH losing 
mass on thermal time 
scale evolved in 
Marchant et al. (2021) 
with MESA

• a posteriori  𝑀d
comparison in 
different stages of 
star’s evolution

(MESA: Paxton et al. 2011, 2013, 
2015, 2018, 2019)

(Cehula & Pejcha 2023)

time



• evolution rerun
with ‘KR90’ mass-
loss prescription 
decreased by a 
factor of 2 to 
simulate ‘new’ 
prescription ⇒
less stable mass 
transfer 

(Cehula & Pejcha 2023)

time

ZOOMRESULTS



CURRENT WORK

• implementation of radiative transfer

START

3D radiation hydrodynamics equations in the flux-
limited diffusion approximation with the Roche 
potential

ASSUMPTIONS

1. Stationarity: 𝜕/𝜕𝑡 → 0

2. Gas flow – 1D: 𝜕/𝜕𝑦 → 0, 𝜕/𝜕𝑧 → 0

3. LTE: 𝑎𝑇4 − 𝐸rad = 0

4. Optically thick limit: 𝜆 → 1/3

END

1D radiation hydrodynamics equations with the 
Roche potential and radiative flux

perpendicular 
plane



PRELIMINARY 
RESULTS

(Cehula & Pejcha 2024, in prep.)

SETUP

• 𝑀d = 30M⊙

• 𝑞 = 1

• 𝛿𝑅d = 0

• 𝜅 = 1.2 cm2 g−1

• 𝑃gas =
𝑘

𝜇𝑚𝑢
𝜌𝑇

• 𝜙R = 𝜁 𝑥
𝐺𝑀d

𝑅L+𝑥−𝑥1

• ΓE,mod − modified 
Eddington factor

RESULTS

• shift of the critical 
point



PRELIMINARY RESULTS
SETUP

• 𝑀d = 30M⊙

• 𝑞 = 1

• 𝛿𝑅d = 0

• 𝜅 = 1.2 cm2 g−1

• 𝑃gas =
𝑘

𝜇𝑚𝑢
𝜌𝑇

• 𝜙R = 𝜁 𝑥
𝐺𝑀d

𝑅L+𝑥−𝑥1

• ΓE,mod − modified Eddington
factor

RESULTS

•  𝑚 ∝ exp ΓE,mod

 𝑚 ∝ exp ΓE,mod

(Cehula & Pejcha 2024, in prep.)



SUMMARY

• comparison with Marchant et al. (2021): 
 factor of 4 lower  𝑀d ⇒ greater 𝛿𝑅d for given  𝑀d ⇒ less stable 

mass transfer ⇒ favors CEE over stable mass transfer

• comparison with Kolb & Ritter (1990): 
 factor of 2 difference in  𝑀d

• testing for systematic differences between the two models

• current work:
 including additional physics ≡ radiative transfer (not possible using 

the standard model)

preliminary results:  𝑚 ∝ exp ΓE,mod

vs.

Cehula & Pejcha (2023, 
MNRAS, 524, 471–490)



BACKUP SLIDES



STANDARD MODEL <–> POTENTIAL

• possible systematic errors

• instant optically thin →
thick transition

• stellar interior (sonically 
connected) does not
influence mass loss

• not possible to include 
additional physics 
(radiation, mag. field, …)

(Lubow & Shu 1975, Ritter 1988, Kolb & Ritter 1990, Pavlovskii & Ivanova 
2015, Jackson et al. 2017, Marchant et al. 2021) (Kolb & Ritter 1990)
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SOLUTION OF NEW EQUATIONS

• 1D Euler equations with the Roche potential:

• 2-point BVP ⇒ numerical relaxation (Press et al. 2007)

isothermal: 𝑃 = 𝐾𝜌

• we still need the EQUATION OF STATE polytropic: 𝑃 = 𝐾𝜌Γ

realistic: MESA EOS module
(Saumon, Chabrier, & van Horn 1995; Irwin 2004; Timmes & 
Swesty 2000; Potekhin & Chabrier 2010; Jermyn et al. 2021)

algebraic 
solution



STELLAR WINDS ≡ WAY TO NEW MT MODEL

• analogies between:
1D isothermal stellar wind

 flow through a rocket nozzle

new model: mass transfer through the nozzle created by the Roche potential around L1

• hydrodynamic equations governing 1D isothermal stellar wind:

• assuming ideal gas EOS:



STELLAR WINDS ≡ WAY TO NEW MT MODEL

• solutions of:

• the critical point (𝑣 = 𝑐𝑇): 

(Lamers & Cassinelli 1999)



ANALOGY TO ROCKET NOZZLES

• hydrodynamic equations governing isothermal gas flow through axially symmetric 
nozzle:

• assuming ideal gas EOS:

• the critical point (𝑣 = 𝑐𝑇): 𝑑𝐴/𝑑𝑙 = 0



ANALOGY TO ROCKET NOZZLES

• considering:

• where (𝐴 = 𝜋𝑟𝑁
2):

• yields:

• i.e. the same momentum equation and 
velocity distribution as isothermal wind:

(Lamers & Cassinelli 1999)



RESULTS
• polytropic vs. 

more realistic EOS:
 factor of 102

difference in an 
extreme case!

• analytical solution 
agrees with the 
numerical for 
polytrope

•  𝑀d 𝑥 = const.

↔ 𝑥0
donor’s 
interior

𝑥1 ↔ L1



RESULTS
•  𝑀new Δ𝑁𝐻𝑃 <–>  𝑀new 𝑥0 , 𝛿𝑅d = const.!

𝟏𝐌⊙ donor on RGB 

𝑅L ↔ L1↔ 𝑅0
donor’s 
interior

𝑅L ↔ L1↔ 𝑅0
donor’s 
interior

30𝐌⊙ low-metallicity donor 
undergoing thermal MT

# of pressure 
scale heights



RESULTS

(b)
1M⊙ donor 
on RGB 

(a)
1M⊙ donor 
on the main 
sequence

MT rate comparison
  𝑀new Δ𝑅d , 
Δ𝑁𝐻𝑃 = const.!

vs. optically thin 
(Jackson et al. 2017)

vs. optically thick 
(Kolb & Ritter 1990)



RESULTS



RESULTS



CURRENT WORK IN EQUATIONS
START

• radiation hydrodynamics equations in the flux-limited diffusion approximation in the 
mixed-frame formulation (e.g. Calderón et al. 2021):
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