

Symbiotic stars, weird novae, and related embarrassing binaries

ERUPTIVE NOVAE IN SYMBIOTIC SYSTEMS

Irin Babu Vathachira¹, Yael Hillman^{2,3}, Amit Kashi^{1,4}

¹Department of Physics, Ariel University, Israel ²Azrieli College of Engineering, Jerusalem, Israel ³Department of Physics, Technion Israel Institute of Technology, Israel ⁴Astrophysics, Geophysics and Space Science (AGASS) Center, Ariel University, Israel

Mass Transfer Mechanisms In Symbiotic Systems

- Roche-lobe overflow (RLOF) $R_D \approx R_{RL}$
- Wind Roche-lobe overflow (WRLOF) $R_D < R_{RL}$; $v_{wind} < v_{esc}$

• Bondi-Hoyle-Lyttleton (BHL) Accretion $R_D \ll R_{RL}$; $v_{wind} > v_{esc}$

Bondi-Hoyle-Lyttleton Accretion

- Symbiotic system (WD+ giant).
- A point star or object moving in a cloud of gas --- accrete matter from the cloud.
- WD accretes matter --- cloud of wind of the giant.

- Wind escapes iso-tropically --- a fraction is captured by the WD --- the rest is lost from the system.
- Accretion rate is calculated as:

- $> r_a$: accretion radius.
- $\succ v_w$: wind velocity.
- $\succ v_s$: speed of sound in the cloud of gas.
- $\succ \rho_w$: density of donor's wind.
- $\succ \dot{M_w}$: wind rate.
- $\succ a$: binary separation.

Bondi H., Hoyle F., 1944, MNRAS, 104, 273.

Methodology For Simulation

Self-consistent binary evolution code

- Binary systems (WD + RD).
- Roche lobe geometry conditions.
- Feedback dominated accretion rate calculations.
- AML due to GR and MB.

Hillman Y., Shara M. M., Prialnik D., Kovetz A., 2020, Nature Astronomy, 4, 886 Hillman Y., 2021, MNRAS, 505, 3260

Modified binary evolution code

- Wind of giant --- widely separated system --- accretes on WD.
- AML due to GR, MB and drag.

Table Of Data

$M_{WD} [M_{\odot}]$	$a_{init} [10^3 R_{\odot}]$	No of Cycles	δ [M _☉]
	2.0	8092	+3.1× 10 ⁻³
1.25	3.4	2203	+4.2 ×10 ⁻⁴
	5.0	904	-4.8 × 10 ^{−5}
	2.0	1006	+3.3 × 10 ^{−3}
1.0	3.4	261	+3.9×10 ⁻⁴
	5.0	105	-7.6 × 10 ^{−6}
	2.0	122	+2.5 × 10 ^{−3}
0.7	3.4	30	+2.3 $ imes$ 10 ⁻⁴
	5.0	14	-5.1 × 10 ^{−6}

MASS EVOLUTION OF AGB AND WD

- Farthest separation --- WD mass decrease.
- Smaller separation --- higher average accretion rate --more efficient mass retention.
- Recurrence period shorter --- more eruptions.

Accretion Rate And Wind Rate

- *M* has high and low epochs during its evolution.
- Follows wind rate.
- Correlation between the accretion rate, WD mass and the separation: Massive WD --- High M
 .

Smaller separation --- High \dot{M} .

•
$$\dot{M} \alpha \frac{M_{WD}^2}{a^2}$$

Recurrence Time (t_{rec})

- t_{rec} --- anti-correlation with accretion and wind rates.
- Higher accretion rates --- critical mass for a TNR faster --- reduce the recurrence period.
- t_{rec} --- tens to ten thousands of years.
- Given separation --- t_{rec} --- shorter for more massive WDs.
- t_{rec} , mass of WD, wind rate --- influences periodicity of eruptions and enrichment levels.

Accreted and ejected mass

η (Mass retention efficiency)

Evolution Of *Porb* And Separation

- Monotonic decrease --- of separation with time.
- $P_{orb} = \left[\frac{4\pi^2}{G(M_D + M_{WD})} \times a^3\right]^{1/2}$
- Period increase --- even if separation decreases.
- If mass change is faster than separation change.

V407 Cyg is a symbiotic systems, comprising a ~1.2 M_{\odot} WD accreting from a ~1.0 M_{\odot} donor, with an orbital period of ~43 years.

Conclusions

- In symbiotic systems, separation decreases rapidly due to significant drag effects.
- Orbital period in symbiotic systems can change abruptly based on the wind rate of the AGB donor.
- Decreasing separation leads to a decrease in orbital period, while a more substantial decrease in mass leads to an increase in orbital period.
- Smaller separations and more massive WDs result in higher accretion rates, facilitating recurrent novae (RNs) and WD growth.
- Models with a positive change in WD mass could be considered potential progenitors of Type Ia supernovae (SNIa), if the donor star could provide sufficient mass.
- Parameter combinations allowing WD mass gain hint at the potential for more massive WDs to become SNIa progenitors over time.

		the state of the local division of the local	10.10.10		
NV.	10.000		all have a		20 C - 1
1000	120105		CT 49, 1, 1	2,1 10 1	લ બ

of the ROYAL ASTRONOMICAL[®]SOCIETY

MNRAS 527, 4806–4820 (2024) Advance Access publication 2023 November 15

https://doi.org/10.1093/mnras/stad3507

Eruptive novae in symbiotic systems

Irin Babu Vathachira[®],¹ Yael Hillman^{®1,2} and Amit Kashi^{®1,3}*

¹Department of Physics, Ariel University, Ariel 4070000, Israel
 ²Department of Physics, Technion – Israel Institute of Technology, Haifa 3200003, Israel
 ³Astrophysics, Geophysics and Space Science (AGASS) Center, Ariel University, Ariel 4070000, Israel

THANK YOU

QUESTIONS ?

Comparison of ejective and Non-ejective cycle

- Model 7 no mass ejection during eruptions.
- TNR occurs on surface of WD with no or very little mass ejection.
- The effective temperature decreases for high TNR (ejective cycles) due to the expansion of the outer layers of the WD.
- *T_{max}* is higher for ejective cycles because there is substantial burning, whereas there is very little burning in non-ejective cycles.
- Same m_{bol} for both cycles with different amplitude.

- Non-ejective cycles occurs for high accretion rate.
- Accretion occurs rapidly so that there is little time for diffusion causing TNR to occurs very close to surface.
- Such TNR will be very weak with insufficient energy to bring ejecta to escape velocity.

Accretion Efficiency

Ejecta Abundance

Binary evolution code

AML of the system

• Magnetic Braking (MB) caused by materials that are captured by magnetic field of donor carries away angular momentum. Change in angular momentum due to MB (J_{MB}) can be calculated as:

 $\dot{J}_{MB} = -1.06 \times 10^{20} M_D R_D^4 P_{orb}^{-3}$

Paxton B., et al., 2015, Astrophysical Journal, 220, 15.

• Gravitational Radiation (GR) caused by massive objects moving, changing the gravitational field carries away angular momentum. Change in angular momentum due to GR (J_{GR}) can be calculated as:

$$J_{GR} = -\frac{32}{5c^5} \left(\frac{2\pi G}{P_{orb}}\right)^{\frac{7}{3}} \frac{(M_{WD}M_D)^2}{(M_{WD} + M_D)^{\frac{2}{3}}}$$

Addison E., 2014, PhD thesis, Utah State University

• Symbiotic system experience an additional angular momentum loss due to drag as it moves through the wind coming from the donor. Change in angular momentum due to drag (D_w) can be calculated as:

$$D_w = \pi \rho_w r_a^2 v_w^2$$

Alexander M. E., Chau W. Y., Henriksen R. N., 1976, Astrophysical Journal, 204, 879.

<u>V 1016 Cyg</u>

- Mira component $0.81 \pm 0.20 M_{\odot}$
- WD 1.1 M_{\odot}
- Recurrence period 15.1 ± 0.2 yr (1949, 1964, 1980, 1994)

<u>RS Oph</u>

- RG-0.68 0.80 M_{\odot}
- WD 1.2 1.4 M_{\odot}
- Recurrence period 21 yr (1898, 1933, 1958, 1985, 2006, 2021)

<u>V 407 Cyg</u>

- Mira 1.0 M_{\odot}
- WD 1.2 M_{\odot}
- Orbital period 43 yr