

Symbiotic stars, weird novae, and related embarrassing binaries Prague, Czech Republic 3-7 June 2024

Hide-and-seek with symbiotic stars

Dr. Stavros Akras

Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing National Observatory of Athens

The first report of SySt has been made in 1898 (RS Oph) as a variable sources with HI and He II λ 4686 lines in its spectrum.

The second one may be Z And (1901) again as a variable star.

For years, scientists had been searching for stars with similar characteristics

- Bidelman (1954) 23 SySts
- Merrill (1958) Introduced the term Symbiotic Stars"
- Boyarchuk (1969) 21 SySts and 16 candidates
- Allen (1984) 129 SySts and 15 candidates
- Kenyon (1986) 133 SySts and 20 candidates

In parallel

- Belczyński et al. (2000) 188 SySts and 30 candidates

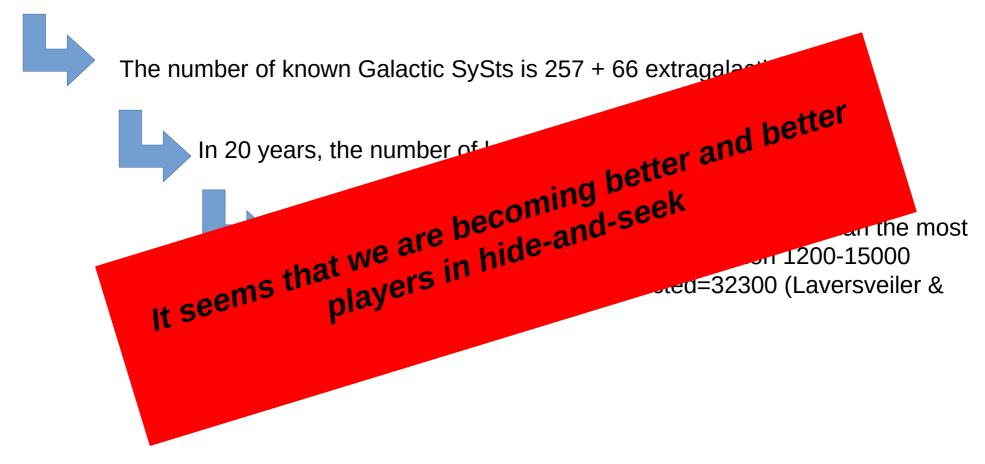
Several studies were also carried out to get an estimation of the expected population of SySts in the Milky Way \rightarrow **1000 up to 100000** (Kenyon 1986, 1993; Munari & Renzini 1992)

These numbers were 1 to 3 order of magnitudes lower

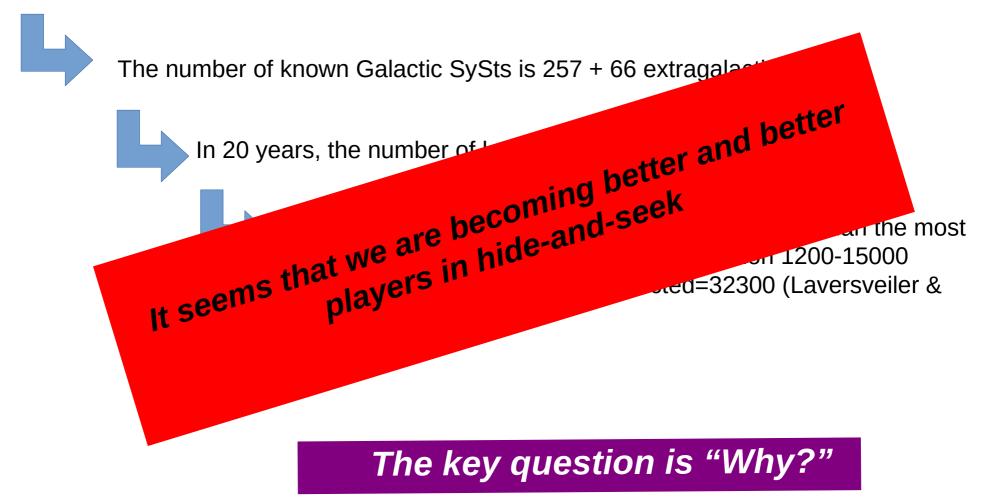
The first report of SySt has been made in 1898 (RS Oph) as a variable sources with HI and He II λ 4686 lines in its spectrum.

Several studies were also carried out to get an estimation of the expected population of SySts in the Milky Way \rightarrow **1000 up to 100000** (Kenyon 1986, 1993; Munari & Renzini 1992)

These numbers were 1 to 3 order of magnitudes lower

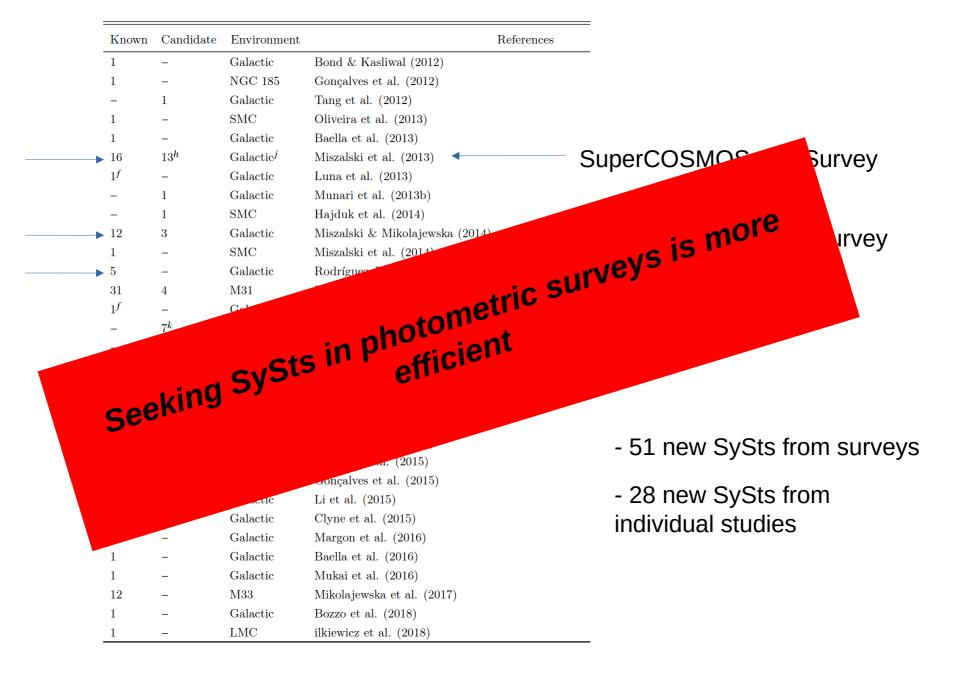

In 2019, two new **independent** catalogs of SySts were published (Akras et al. and Merc et al.)

The number of known Galactic SySts is 257 + 66 extragalactic


In 20 years, the number of known SySts is almost double (~70%)

This new number is still order of magnitudes lower than the most recent estimations for their Galactic population 1200-15000 (Lu et al. 2006) or >1690 and expected=32300 (Laversveiler & Gonçalves 2023)

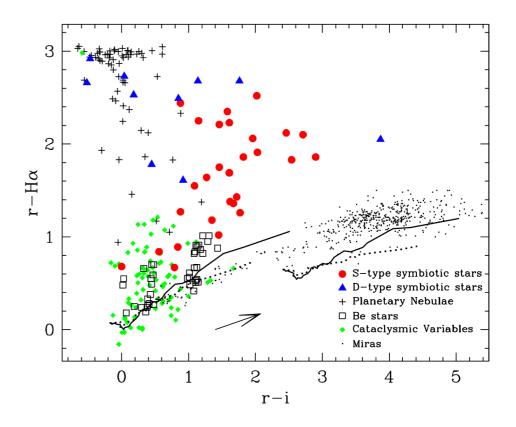
In 2019, two new **independent** catalogs of SySts were published (Akras et al. and Merc et al.)



In 2019, two new **independent** catalogs of SySts were published (Akras et al. and Merc et al.)

Known	Candidate	Environment	References
_	2^a	Galactic	Corradi (1995), Weidmann & Gamen (2011)
188	30^{b}	Catalog	Bel2000 and references therein
_	2^c	Galactic	Schmeja & Kimeswenger (2001), Corradi et al. (2011b)
_	1	Galactic	Feibelman (2001), Groves et al. (2002)
2^d	2^d	Galactic	Van Eck & Jorissen (2002)
4	-	Galactic	Munari & Zwitter (2002), Downes & Keyes (1988)
1	-	Galactic	Pereira et al. (2002)
1^e	-	Galactic	Wheatley et al.(2003)
-	1	Galactic	Pereira & Miranda (2005), Miranda et al. (2010), Weidmann & Gamen (2011)
1^f	-	Galactic	Mattana et al. (2006), Masetti et al. (2006a)
1^f	-	Galactic	Masetti et al. (2006b)
1^f	-	Galactic	Kaplan et al. (2007)
1^f	-	Galactic	Masetti et al. (2007)
→ 3	1183^{g}	Galactic	Corradi et al (2008)
-	1	Galactic	Phillips & Ramos-Larios (2008)
1	-	IC 10	Gonçalves et al. (2008)
1	-	Galactic	Mennickent et al. (2008)
→ 4	8^h	Galactic	Miszalski et al. (2009) SuperCOSMOS Sky Survey
_	1^i	Galactic	Viironen et al. (2009)
1	-	NGC 6822	Kniazev et al. (2009)
1	-	Galactic	Corradi & Giammanco (2010)
→ 1	-	Galactic	Corradi et al. (2010a)
	-	Galactic	Corradi et al. (2010b)
1^f	1^f	Galactic	Nespoli et al. (2010)
-	1	Galactic	Weidmann & Gamen (2011)
→ 1	-	Galactic	Corradi et al. (2011a)
-	5	LMC	Miszalski et al. (2011)
1^{f}	_	Galactic	Masetti et al. (2011)
1	_	SMC	Torres et al. (2012)

Known	Candidate	Environment	References	
1	_	Galactic	Bond & Kasliwal (2012)	
1	_	NGC 185	Gonçalves et al. (2012)	
_	1	Galactic	Tang et al. (2012)	
1	_	SMC	Oliveira et al. (2013)	
1	_	Galactic	Baella et al. (2013)	
 16	13^h	$Galactic^{j}$	Miszalski et al. (2013)	SuperCOSMOS Sky Survey
1^{f}	-	Galactic	Luna et al. (2013)	
-	1	Galactic	Munari et al. (2013b)	
-	1	SMC	Hajduk et al. (2014)	
 12	3	Galactic	Miszalski & Mikolajewska (2014) ┥	 SuperCOSMOS Hα Survey
1	-	SMC	Miszalski et al. (2014)	Super Section In Survey
 5	_	Galactic	Rodríguez–Flores et al. (2014) \blacktriangleleft	— IPHAS survey
31	4	M31	Mikolajewska et al. (2014)	
1^f	-	Galactic	Bahramian et al. (2014)	
-	7^k	LMC	Reid (2014)	
-	5	SMC	Kamath et al. (2014)	
1	-	Galactic	Mroz et al. (2014)	
-	1	Galactic	Hynes et al. (2014)	
1	-	Galactic	Joshi et al. (2015)	
1	-	Galactic	Srivastana et al. (2015)	
-	1	Galactic	Hambsch et al. (2015)	- 51 new SySts from surveys
_	2	LMC	Kamath et al. (2015)	
1	2	NGC 205	Gonçalves et al. (2015)	
2	-	Galactic	Li et al. (2015)	 - 28 new SySts from
-	1^l	Galactic	Clyne et al. (2015)	individual studies
1	-	Galactic	Margon et al. (2016)	
1	-	Galactic	Baella et al. (2016)	
1	-	Galactic	Mukai et al. (2016)	
12	-	M33	Mikolajewska et al. $\left(2017\right)$	
1	-	Galactic	Bozzo et al. (2018)	
1	_	LMC	ilkiewicz et al. (2018)	


SySts Selection criteria & Diagnostic diagrams

- Besides the optical spectroscopic criteria
 - (I) strong He II and H α lines
 - (II) highly ionized Fe lines
 - (III) absorption TiO, VO features
 - (IV) the presence of Raman OVI 6830 line
- In the era of photometric surveys

SySts in the IPHAS survey

r-Hα >= 0.25*(r-i) +0.65 (e.g. Corradi et al. 2008)

Discovery of 18 new SySts

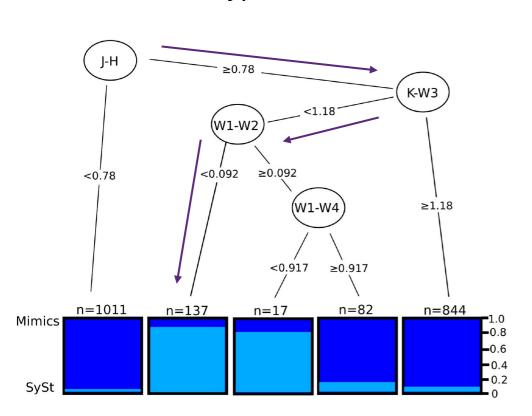
SySts Selection criteria & Diagnostic diagrams

- Besides the optical spectroscopic criteria
 - (I) strong He II and H α lines
 - (II) highly ionized Fe lines
 - (III) absorption TiO, VO features
 - (IV) the presence of Raman OVI 6830 line
- In the era of photometric surveys

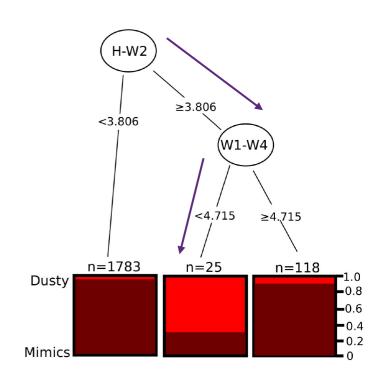
SySts in infrared _surveys_____

2MASS: J-H vs H-K

(Allen & Glass 1974, Phillips 2007)

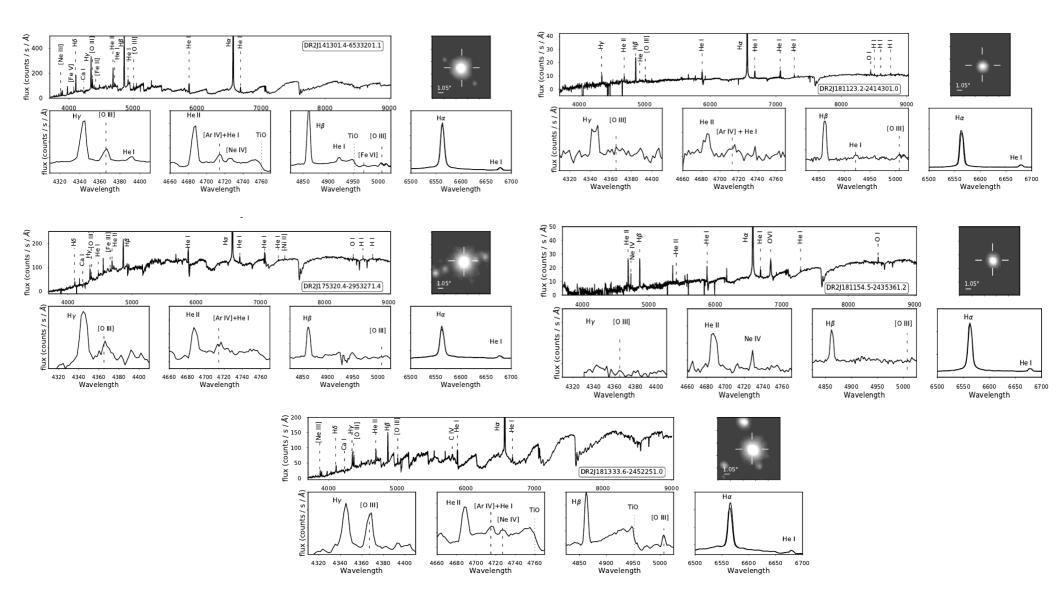

Near-IR: I-J vs J-Ks (Schmeja & Kimeswenger 2001)

Mid-IR: K-[12] vs [12]-[25] (Luud & Tuvikene 1987, Leedjarv 1992)

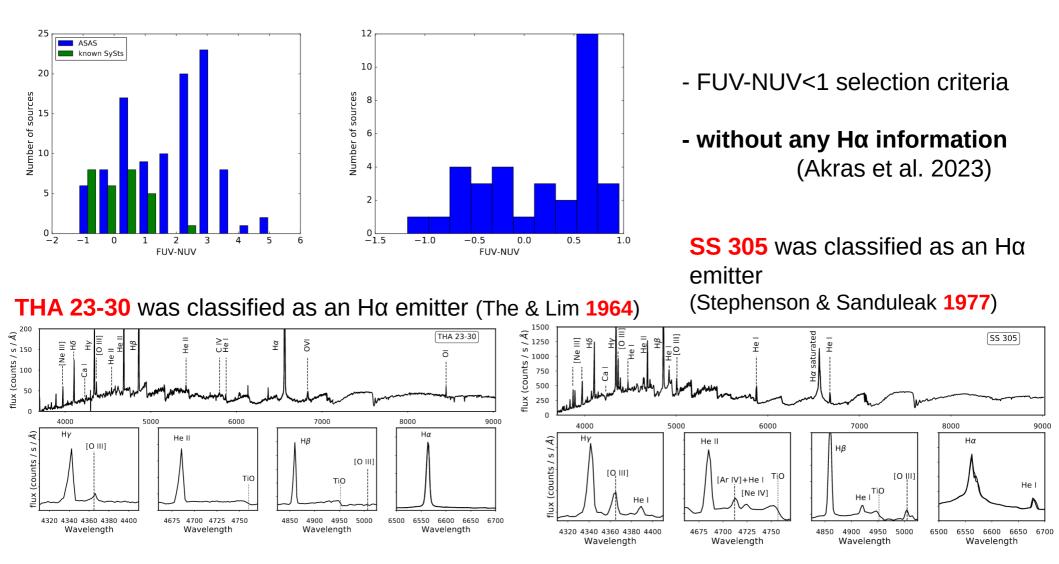


The era of all-sky surveys, big data and machine learning algorithms

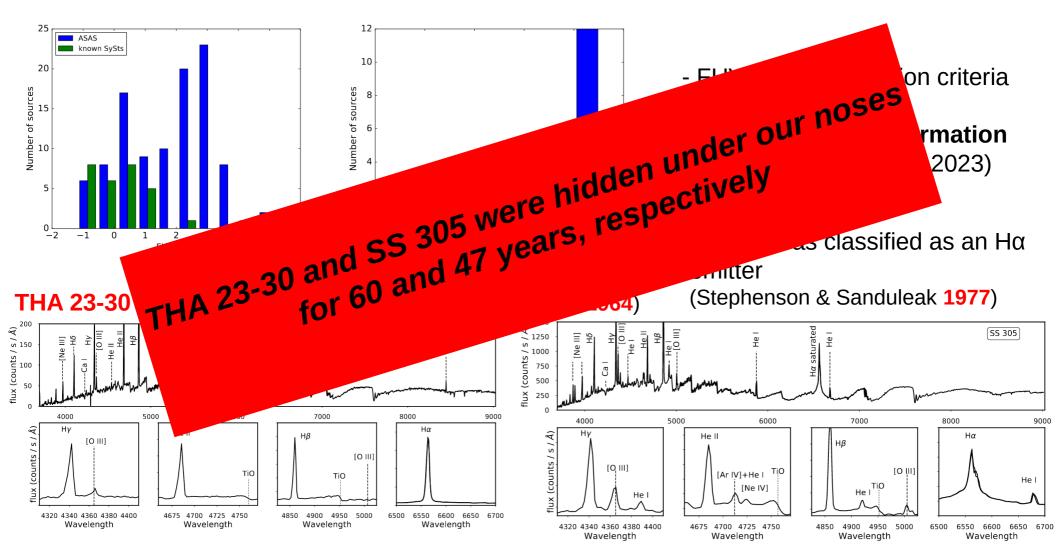
Using 2MASS & WISE colour indices, we trained the Decision tree algorithm and extract new selection criteria for SySts in the infrared regime (Akras et al. 2019b)



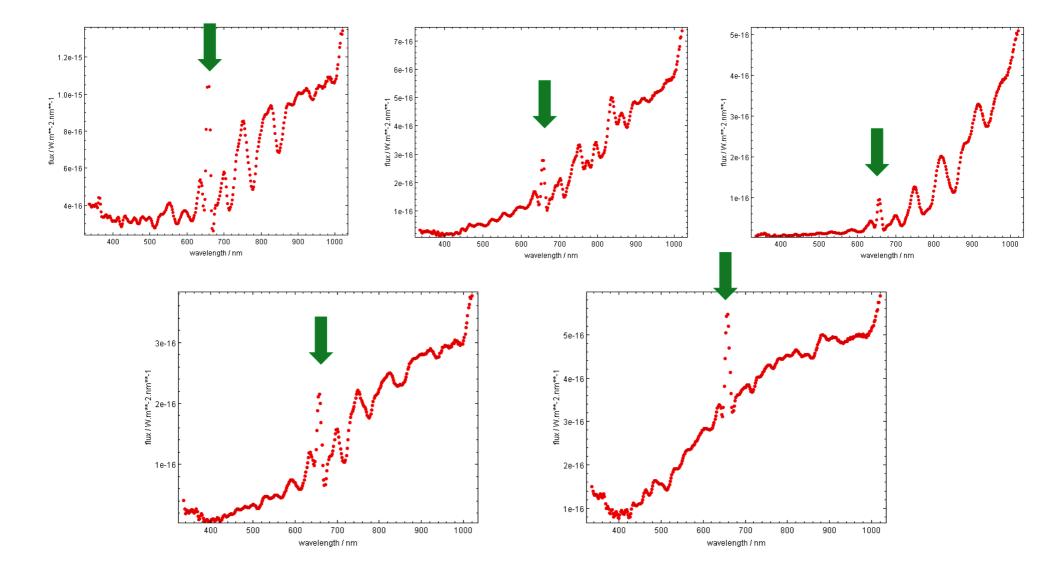
S-type



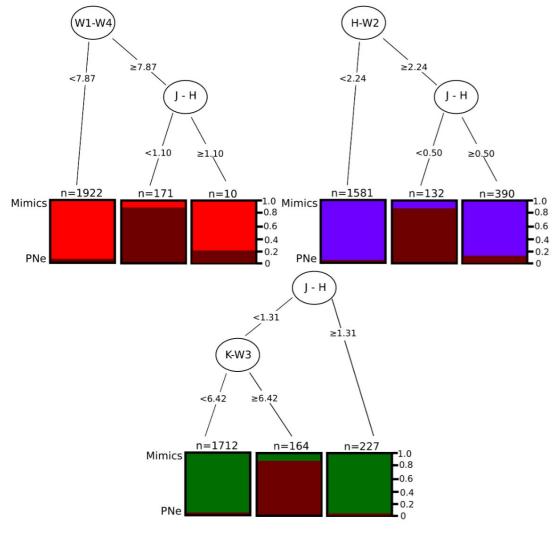
D-type


I) 5 new genuine SySts after observing only 7 candidates (Akras et al. 2021)

II) 2 new genuine SySts were found combining photometric data from 2MASS/WISE & GALEX


II) 2 new genuine SySts were found combining photometric data from 2MASS/WISE & GALEX

Since the publication of the near-infrared selection criteria, **6 new genuine SySts** have also been discovered and **all of them** satisfy the criteria.

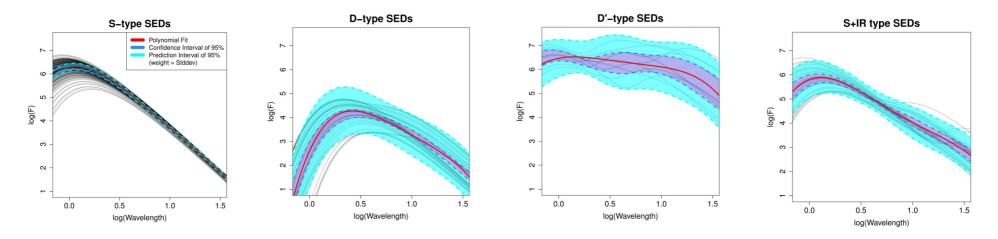

- 1) Hen 3-860 (Merc et al. 2021)
- 2) V2204 Oph (Merc et al. 2021)
- 3) THA 15-31 (Munari et al. 2022) was classified as an Hα emitter (The & Lim 1964)
- 4) Sct 1 (De et al. 2022). D-type SySt with X-ray emission
- 5) V618 Sgr (Merc et al. 2023)
- 6) DeGaPe 35 (Petit et al. 2023) Thomas Petit's talk

Seeking SySts in GAIA, we have ended up with 5 bonafide genuine SySts (+42 candidates). All of them pass the new IR selection criteria

Playing Hide-and-seek with Hα emitters

ML has also used to seek PNe in publicly available catalogs (Akras et al. 2019c)

Applying the selection criteria to IPHAS and VPHAS+ surveys


92 known were recovered

2 new PNe + 39 candidates

False positive identification is <15%

Statistical outcomes from my catalog (Akras et al. 2019)

-SEDs peak from 0.85 to 2.5 $\mu m.$

- 50-60% of SySts show the Raman OVI line in their spectra
- The majority of S-type are also X-ray emitters. Only α and β -type X-ray SySts (Muerset et al. 1997, Luna et al. 2013) display the Raman line in their spectra

Type	All	%	Known	%	Peak	T_{eff}^{\dagger}	T _{dust}	OVI	X-Ray
	(#)		(#)		$(\mu { m m})$	(μm)	(K)	(%)	(#)
S	263	64	238	74	0.83 - 1.7	3000-4000	-	61	33
S+IR	37	9	26	8	0.88 - 1.7	3000-3900	150-500	39	3
D	60	15	42	13	2.1 - 4.1	_	200-400/700-1350	55	8
D'	31	7.5	11	3.5	"flat"	3500 - 4400	150-350/550-1000	50	-
No type	19	4.5	6	1.5	_	_	_	_	2

 Table 4. Characteristics of Different Types of SySts.

Statistical outcomes from my catalog (Akras et al. 2019)

-He II λ 4686/H β three time large in SySts with the Raman OVI line detected

					0		
Galaxy	O VI $\lambda 6830/H \alpha$	${\rm HeII}\lambda4686/{\rm H}\beta$		${\rm HeI}~\lambda5876/{\rm H}\beta$		He II $\lambda 4686/[O III] \lambda 5007$	
		O VI (\checkmark)	$O VI (\mathbf{X})$	O VI (\checkmark)	$O VI (\mathbf{X})$	O VI (\checkmark)	$O VI (\mathbf{X})$
All	$0.06 \ (0.04)$	$0.66 \ (0.26)$	$0.22 \ (0.15)$	$0.43 \ (0.33)$	0.38(0.23)	1.45(1.49)	1.21 (1.74)
Milky Way	$0.06 \ (0.04)$	$0.65 \ (0.26)$	$0.21 \ (0.16)$	$0.46\ (0.34)$	$0.40 \ (0.25)$	1.15(1.24)	1.42 (1.93)
M31	$0.05\ (0.03)$	$0.68 \ (0.27)$	0.25~(0.10)	$0.26 \ (0.22)$	$0.34 \ (0.15)$	1.47(1.40)	0.69 (0.83)
M33	0.04 (0.04)	$0.81 \ (0.16)$	$0.24 \ (0.08)$	$0.35 \ (0.15)$	$0.27 \ (0.22)$	3.78(1.12)	0.73 (0.83)

Table 3. Emission-line ratios of $SySts^{\dagger}$

 † The number in parentheses corresponds to the standard deviations

Therefore, for the identification of the emission line center at 6830, as the Raman-scattered OVI line, It is required the detection of the He II 4684A line too.

Take aways

- SySts were/are very good players in hide-and-seek but we are getting better and better because of the multi-wavelength studies and ML approaches
- 13 new genuine SySts have been discovered since 2020 (in 4 years).
- 2MASS and WISE data provide important information for identifying SySts
- GALEX also provides useful information for the hot companion (FUV-NUV)
- 50-60% of SySts show the Raman scattered-line OVI λ 6830.
- He II λ 4686/H β is three time large in SySts with the OVI line detected and the presence of strong He II λ 4686 line supports the identification of the Raman line

Ευχαριστώ